Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neural crest stem cells (NCSCs) are a population of multipotent stem cells that are distributed broadly in many tissues and organs and are capable of differentiating into a variety of cell types that are dispersed throughout three germ layers. We are interested in studying the effects of simulated microgravity on the survival and self-renewal of NCSCs. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro, respectively, in a 2D adherent environment and a 3D suspension environment using the rotatory cell culture system (RCCS) to simulate microgravity. We found that rat NCSCs (rNCSCs) cultured in the RCCS for 24 h showed disrupted organization of filamentous actin, increased globular actin level, formation of plasma membrane blebbing and neurite-like artifact, as well as decreased levels of cortactin and vimentin. Interestingly, ∼70% of RCCS-cultured rNCSCs co-expressed cleaved (active) caspase-3 and neuronal markers microtubule-associated protein 2 (MAP2) and Tuj1 instead of NCSC markers, suggesting stress-induced formation of neurite-like artifact in rNCSCs. In addition, rNCSCs showed increased C-X-C chemokine receptor 4 (CXCR4) expression, RhoA GTPase activation, Rho-associated kinase 1 (ROCK1) and p38 mitogen-activated protein kinase (MAPK) phosphorylation, and p53 expression in the nucleus. Incubation of rNCSCs with the Gα protein inhibitor pertussis toxin or CXCR4 siRNA during RCCS-culturing prevented cytoskeleton disorganization and plasma membrane blebbing, and it suppressed apoptosis of rNCSCs. Taken together, we demonstrate for the first time that simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rNCSCs via upregulating CXCR4 expression and the RhoA-ROCK1-p38 MAPK-p53 signaling pathway.

          Related collections

          Author and article information

          Journal
          Stem Cells Dev.
          Stem cells and development
          Mary Ann Liebert Inc
          1557-8534
          1547-3287
          August 01 2016
          : 25
          : 15
          Affiliations
          [1 ] 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .
          [2 ] 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan .
          [3 ] 3 Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital , Longtan Township, Taoyuan County, Taiwan .
          [4 ] 4 Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan .
          [5 ] 5 Department of Medical Research, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan .
          Article
          10.1089/scd.2016.0040
          27269634
          e9aa55a1-1739-48da-8631-422ef7882960
          History

          Comments

          Comment on this article