2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Frameshift variants in the C-terminal of CTNNB1 cause familial exudative vitreoretinopathy by AXIN1-mediated ubiquitin-proteasome degradation condensation

      , , , , , , , ,
      International Journal of Biological Macromolecules
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d16221130e174">The β-catenin has two intrinsically disordered regions in both C- and N-terminal domains that trigger the formation of phase-separated condensates. Variants in its C-terminus are associated with familial exudative vitreoretinopathy (FEVR), yet the pathogenesis and the role of these variants in inducing abnormal condensates, are unclear. In this study, we identified a novel heterozygous frameshift variant, c.2104-2105insCC (p.Gln703ProfsTer33), in CTNNB1 from a FEVR-affected family. This variant encodes an unstable truncated protein that was unable to activate Wnt signal transduction, which could be rescued by the inhibition of proteasome or phosphorylation. Further functional experiments revealed the propensity of the Gln703ProfsTer33 variant to form cytoplasmic condensates, exhibiting a lower turnover rate after fluorescent bleaching due to enhanced interaction with AXIN1. LiCl, which specifically blocks GSK3β-mediated phosphorylation, restored signal transduction, cell proliferation, and junctional integrity in primary human retinal microvascular endothelial cells over-expressed with Gln703ProfsTer33. Finally, experiments on two reported FEVR-associated mutations in the C-terminal domain of β-catenin exhibited several functional defects similar to the Gln703ProfsTer33. Together, our findings unravel that the C-terminal region of β-catenin is pivotal for the regulation of AXIN1/β-catenin interaction, acting as a switch to mediate nucleic and cytosolic condensates formation that is implicated in the pathogenesis of FEVR. </p>

          Related collections

          Author and article information

          Journal
          International Journal of Biological Macromolecules
          International Journal of Biological Macromolecules
          Elsevier BV
          01418130
          February 2024
          February 2024
          : 258
          : 128570
          Article
          10.1016/j.ijbiomac.2023.128570
          38096938
          e8f6f64d-7d81-43aa-b4f1-8336874048ad
          © 2024

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://doi.org/10.15223/policy-017

          https://doi.org/10.15223/policy-037

          https://doi.org/10.15223/policy-012

          https://doi.org/10.15223/policy-029

          https://doi.org/10.15223/policy-004

          History

          Comments

          Comment on this article