17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fabrication of a Disposable Electrochemical Immunosensor Based on Nanochannel Array Modified Electrodes and Gated Electrochemical Signals for Sensitive Determination of C-Reactive Protein

      , , ,
      Nanomaterials
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sensitive determination of C-reactive protein (CRP) is of great significance because it is an early indicator of inflammation in cardiovascular disease and acute myocardial infarction. A disposable electrode with an integrated three-electrode system (working, reference, and counter electrodes) has great potential in the detection of biomarkers. In this work, an electrochemical immunosensing platform was fabricated on disposable and integrated screen-printed carbon electrode (SPCE) by introducing nanochannel arrays and gated electrochemical signals, which can achieve the sensitive detection of CRP in serum. To introduce active reactive groups for the fabrication of immuno-recognitive interface, vertically-ordered mesoporous silica-nanochannel film (VMSF) with rich amino groups (NH2-VMSF) was rapidly grown by electrochemical assisted self-assembly (EASA). The electrochemically reduced graphene oxide (ErGO) synthesized in situ during the growth of NH2-VMSF was used as a conductive adhesive glue to achieve stable bonding of the nanochannel array (NH2-VMSF/ErGO/SPCE). After the amino group on the outer surface of NH2-VMSF reacted with bifunctional glutaraldehyde (GA/NH2-VMSF/ErGO/SPCE), the converted aldehyde surface was applied for covalent immobilization of the recognitive antibody (Ab) followed with the blocking of the non-specific sites. The fabricated immunosensor, Ab/GA/NH2-VMSF/ErGO/SPCE, enables sensitive detection of CRP in the range from 10 pg/mL to 100 ng/mL with low limit of detection (LOD, 8 pg/mL, S/N = 3). The immunosensor possessed high selectivity and can realize reliable determination of CRP in human serum.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Preparation of Graphitic Oxide

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Clinical application of C-reactive protein for cardiovascular disease detection and prevention.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ratiometric Fluorescent Nanohybrid for Noninvasive and Visual Monitoring of Sweat Glucose

              Noninvasive and visual monitoring of glucose is highly desirable for diabetes diagnostics and long-term home-based health management. Owing to the correlation of the glucose level between blood and sweat, on-body sweat glucose detection provides potential for noninvasive healthcare but is highly challenging. Herein, we for the first time demonstrate a wearable skin pad based on the ratiometric fluorescent nanohybrid, which can realize noninvasive and visual monitoring of sweat glucose. Luminescent porous silicon (PSi) particles, which have a porous structure and oxidation-responsive photoluminescence decay, are chosen to load (adsorb or entrap) carbon quantum dots (CQDs) for the construction of the dual fluorescence nanohybrid. Bimetallic (Au and Ag) nanoparticles (BiM) are also co-decorated on the PSi particle to improve detection sensitivity by enhancing PSi's initial fluorescence and oxidation kinetics. Owing to the efficient fluorescence resonance energy transfer effect, BiM-CQDs@PSi initially exhibits PSi's red fluorescence with complete quenching of CQDs's blue fluorescence. The oxidation of PSi triggered by hydrogen peroxide (H2O2) weakens the FRET effect and decays PSi's fluorescence, causing ratiometric fluorescence to change from red (PSi) to blue (CQDs). A wearable skin pad is easily fabricated by co-immobilization of BiM-CQDs@PSi and glucose oxidase (GOX) in a transparent and biocompatible chitosan film supported by an adhesive polyurethane membrane. When the skin pad is attached on the body, the same ratiometric fluorescence transition (red → blue) is observed upon the stimulation of H2O2 generated in GOX-catalyzed oxidation of sweat glucose. Based on the strong correlation between the ratio of the fluorescence change and sweat glucose level, clinical tests toward diabetics and healthy volunteers can clearly indicate hyperglycemia.
                Bookmark

                Author and article information

                Contributors
                Journal
                NANOKO
                Nanomaterials
                Nanomaterials
                MDPI AG
                2079-4991
                November 2022
                November 11 2022
                : 12
                : 22
                : 3981
                Article
                10.3390/nano12223981
                9696649
                36432268
                e8f3f150-fbc3-4a58-ab68-7fe6b4e515d3
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article