25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Achievements and challenges of sialic acid research

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sialic acids are one of the most important molecules of life, since they occupy the terminal position on macromolecules and cell membranes and are involved in many biological and pathological phenomena. The structures of sialic acids, comprising a family of over 40 neuraminic acid derivatives, have been elucidated. However, many aspects of the regulation of their metabolism at the enzyme and gene levels, as well as of their functions remain mysterious. Sialic acids play a dual role, not only are they indispensable for the protection to and adaptation of life, but are also utilised by life-threatening infectious microorganisms. In this article the present state of knowledge in sialobiology, with an emphasis on my personal experience in this research area, is outlined including a discussion of necessary future work in this fascinating field of cell biology.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract.

          Human milk oligosaccharides (HMOs) show a complexity and variety not found in milk of any other species. Although progress has been made in the past 3 decades with regard to identification and structural characterization of HMOs, not much is known about the physiologic functions of HMOs. As a prerequisite for biological activity in infant metabolism, HMOs have to resist enzymatic hydrolysis in the gastrointestinal tract. To assess the extent to which selected HMOs are hydrolyzed, we carried out in vitro digestion studies using enzyme preparations of human and porcine pancreas and intestinal brush border membranes (BBMs). Fractions of HMOs, including structurally defined isolated oligosaccharides, were digested for up to 20 h with human pancreatic juice and BBMs prepared from human or porcine intestinal tissue samples. HMOs were incubated by using a porcine pancreatic homogenate and BBMs as enzyme sources. HMOs and digestion products were identified by mass spectrometry and anion-exchange chromatography. Additionally, free D-glucose, L-fucose, and N-acetylneuraminic acid were determined enzymatically. Whereas maltodextrin (control) was rapidly and completely hydrolyzed, neutral and acidic HMOs showed a profound resistance against pancreatic juice and BBM hydrolases. However, cleavage of most of the HMOs was achieved by using a pancreatic homogenate containing intracellular, including lysosomal, enzymes in addition to secreted enzymes. The results of this study strongly suggest that HMOs are not hydrolyzed by enzymes in the upper small intestine. Although intact HMOs may be absorbed, we postulate that a majority of HMOs reach the large intestine, where they serve as substrates for bacterial metabolism. Therefore, HMOs might be considered the soluble fiber fraction of human milk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glycosyltransferase activity of Fringe modulates Notch-Delta interactions.

            Ligands that are capable of activating Notch family receptors are broadly expressed in animal development, but their activity is tightly regulated to allow formation of tissue boundaries. Members of the fringe gene family have been implicated in limiting Notch activation during boundary formation, but the mechanism of Fringe function has not been determined. Here we present evidence that Fringe acts in the Golgi as a glycosyltransferase enzyme that modifies the epidermal growth factor (EGF) modules of Notch and alters the ability of Notch to bind its ligand Delta. Fringe catalyses the addition of N-acetylglucosamine to fucose, which is consistent with a role in the elongation of O-linked fucose O-glycosylation that is associated with EGF repeats. We suggest that cell-type-specific modification of glycosylation may provide a general mechanism to regulate ligand-receptor interactions in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells.

              When trypomastigotes of T. cruzi emerge from cells of the mammalian host, they contain little or no sialic acids on their surfaces. However, rapidly upon entering the circulation, they express a unique cell surface trans-sialidase activity. This enzyme specifically transfers alpha (2-3)-linked sialic acid from extrinsic host-derived macromolecules to parasite surface molecules, leading to the assembly of Ssp-3, a trypomastigote-specific epitope. The T. cruzi trans-sialidase does not utilize cytidine 5' monophospho-N-acetylneuraminic acid as a donor substrate, but readily transfers sialic acid from exogenously supplied alpha (2-3)-sialyllactose. Monoclonal antibodies that recognize sialic acid residues of Ssp-3 inhibit attachment of trypomastigotes to host cells, suggesting that the unusual trans-sialidase provides Ssp-3 with structural features required for target cell recognition.
                Bookmark

                Author and article information

                Journal
                Glycoconj J
                Glycoconj. J
                Glycoconjugate Journal
                Kluwer Academic Publishers-Plenum Publishers (New York )
                0282-0080
                1573-4986
                2000
                : 17
                : 7
                : 485-499
                Affiliations
                GRID grid.9764.c, ISNI 0000000121539986, Biochemisches Institut, , Christian-Albrechts-Universität, ; Olshausenstr. 40, D-24098 Kiel, Germany
                Article
                321849
                10.1023/A:1011062223612
                7087979
                11421344
                e8dc6e3f-6a1b-44fc-b41d-08dd8ee62d3b
                © Kluwer Academic Publishers 2000

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article
                Custom metadata
                © Kluwer Academic Publishers 2000

                Biochemistry
                sialic acid diversity,sialic acid functions,sialic acid future aspects,sialic acid metabolism,sialic acid occurrence

                Comments

                Comment on this article