1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Improving mixed-integer temporal modeling by generating synthetic data using conditional generative adversarial networks: A case study of fluid overload prediction in the intensive care unit

      , , ,
      Computers in Biology and Medicine
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The challenge of mixed-integer temporal data, which is particularly prominent for medication use in the critically ill, limits the performance of predictive models. The purpose of this evaluation was to pilot test integrating synthetic data within an existing dataset of complex medication data to improve machine learning model prediction of fluid overload.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.

          (2013)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.

            Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September, 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles.18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies.A detailed explanation and elaboration document is published separately and is freely available on the websites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE statement will contribute to improving the quality of reporting of observational studies
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SMOTE: Synthetic Minority Over-sampling Technique

              An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Computers in Biology and Medicine
                Computers in Biology and Medicine
                Elsevier BV
                00104825
                January 2024
                January 2024
                : 168
                : 107749
                Article
                10.1016/j.compbiomed.2023.107749
                38011778
                e8be2af3-7918-4f54-b51f-9b99db178132
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article