7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Self-assembly dynamics and antimicrobial activity of all l- and d-amino acid enantiomers of a designer peptide

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          All l- and d-antimicrobial peptides had different self-assembly dynamics with implication in their antimicrobial activity.

          Abstract

          Recent studies have shown that antimicrobial peptides (AMPs) can self-assemble into supramolecular structures, but this has been overlooked as causative of their antimicrobial activity. Also, the higher antimicrobial potency of d-enantiomers compared to l-enantiomers of AMPs cannot always be attributed to their different resistance to protease degradation. Here, we tested all l- and d-amino acid versions of GL13K, an AMP derived from a human protein, to study structural links between the AMP secondary structure, supramolecular self-assembly dynamics, and antimicrobial activity. pH dependence and the evolution of secondary structures were related to a self-assembly process with differences among these AMPs. The two GL13K enantiomers formed analogous self-assembled twisted nanoribbon structures, but d-GL13K initiated self-assembly faster and had notably higher antimicrobial potency than l-GL13K. A non-antimicrobial scrambled amino acid version of l-GL13K assembled at a much higher pH to form distinctively different self-assembled structures than l-GL13K. Our results support a functional relationship between the AMP self-assembly and their antimicrobial activity.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.

          The aim of broth and agar dilution methods is to determine the lowest concentration of the assayed antimicrobial agent (minimal inhibitory concentration, MIC) that, under defined test conditions, inhibits the visible growth of the bacterium being investigated. MIC values are used to determine susceptibilities of bacteria to drugs and also to evaluate the activity of new antimicrobial agents. Agar dilution involves the incorporation of different concentrations of the antimicrobial substance into a nutrient agar medium followed by the application of a standardized number of cells to the surface of the agar plate. For broth dilution, often determined in 96-well microtiter plate format, bacteria are inoculated into a liquid growth medium in the presence of different concentrations of an antimicrobial agent. Growth is assessed after incubation for a defined period of time (16-20 h) and the MIC value is read. This protocol applies only to aerobic bacteria and can be completed in 3 d.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?

            Antimicrobial peptides are an abundant and diverse group of molecules that are produced by many tissues and cell types in a variety of invertebrate, plant and animal species. Their amino acid composition, amphipathicity, cationic charge and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of antimicrobial peptide activity, their relevance to how peptides damage and kill microorganisms still need to be clarified. Recently, there has been speculation that transmembrane pore formation is not the only mechanism of microbial killing. In fact several observations suggest that translocated peptides can alter cytoplasmic membrane septum formation, inhibit cell-wall synthesis, inhibit nucleic-acid synthesis, inhibit protein synthesis or inhibit enzymatic activity. In this review the different models of antimicrobial-peptide-induced pore formation and cell killing are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using circular dichroism spectra to estimate protein secondary structure.

              Circular dichroism (CD) is an excellent tool for rapid determination of the secondary structure and folding properties of proteins that have been obtained using recombinant techniques or purified from tissues. The most widely used applications of protein CD are to determine whether an expressed, purified protein is folded, or if a mutation affects its conformation or stability. In addition, it can be used to study protein interactions. This protocol details the basic steps of obtaining and interpreting CD data, and methods for analyzing spectra to estimate the secondary structural composition of proteins. CD has the advantage that measurements may be made on multiple samples containing < or =20 microg of proteins in physiological buffers in a few hours. However, it does not give the residue-specific information that can be obtained by x-ray crystallography or NMR.
                Bookmark

                Author and article information

                Contributors
                Journal
                NANOHL
                Nanoscale
                Nanoscale
                Royal Society of Chemistry (RSC)
                2040-3364
                2040-3372
                2019
                2019
                : 11
                : 1
                : 266-275
                Affiliations
                [1 ]MDRCBB
                [2 ]Minnesota Dental Research Center for Biomaterials and Biomechanics
                [3 ]University of Minnesota
                [4 ]Minneapolis
                [5 ]USA
                [6 ]G.I.R. Bioforge
                [7 ]University of Valladolid
                [8 ]CIBER-BBN
                [9 ]Valladolid 47011
                [10 ]Spain
                Article
                10.1039/C8NR07334A
                6319268
                30534763
                e8b5ecff-ef07-41e7-80d7-61fa8f7263a4
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article