Because of the importance of novel macrocycles in supramolecular science, interest in the preparation of these substances has grown considerably. However, the discovery of a new class of macrocycles presents challenges because of the need for routes to further functionalization of these molecules and good host-guest complexation. Furthermore, useful macrocylic hosts must be easily synthesized in large quantities. With these issues in mind, the recently discovered pillararenes attracted our attention. These macrocycles contain hydroquinone units linked by methylene bridges at para positions. Although the composition of pillararenes is similar to that of calixarenes, they have different structural characteristics. One conformationally stable member of this family is pillar[5]arene, which consists of five hydroquinone units. The symmetrical pillar architecture and electron-donating cavities of these macrocycles are particularly intriguing and afford them with some special and interesting physical, chemical, and host-guest properties. Due to these features and their easy accessibility, pillararenes, especially pillar[5]arenes, have been actively studied and rapidly developed within the last 4 years. In this Account, we provide a comprehensive overview of pillararene chemistry, summarizing our results along with related studies from other researchers. We describe strategies for the synthesis, isomerization, and functionalization of pillararenes. We also discuss their macrocyclic cavity sizes, their host-guest properties, and their self-assembly into supramolecular polymers. The hydroxyl groups of the pillararenes can be modified at all positions or selectively on one or two positions. Through a variety of functionalizations, researchers have developed many pillararene derivatives that exhibit very interesting host-guest properties both in organic solvents and in aqueous media. Guest molecules include electron acceptors such as viologen derivatives and (bis)imidazolium cations and alkyl chain derivatives such as n-hexane, alkanediamines, n-octyltrimethyl ammonium, and neutral bis(imidazole) derivatives. These host-guest studies have led to the fabrication of (pseudo)rotaxanes or poly(pseudo)rotaxanes, supramolecular dimers or polymers, artificial transmembrane proton channels, fluorescent sensors, and other functional materials.