6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Minocycline Induces Autophagy and Inhibits Cell Proliferation in LPS-Stimulated THP-1 Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Excessive activation and proliferation of inflammatory cell and uncontrolled release of cytokines and chemokines, also known as cytokine storm, is considered to be the main cause of sepsis. Accumulating evidence has indicated that autophagy may play an important role in regulating immune response and controlling excessive inflammation. Recent studies have showed that minocycline has immunomodulatory effects on cytokine and chemokine production. It has also been reported that minocycline can induce autophagy, suggesting that autophagy may be involved in the process of minocycline regulating inflammation and immune response. However, the precise mechanism is unclear. In the present study, we used enzyme-linked immunosorbent assays (ELISA) to measure the production of cytokines following minocycline treatment of lipopolysaccharide- (LPS-) stimulated THP-1 cells. Western blotting analysis was performed to confirm autophagy and the mTOR signal pathway. Cell proliferation was measured by WST-1 cell proliferation assay. We demonstrated that LPS induced autophagy in a tumor necrosis factor- (TNF-) α-mediated manner, and simultaneously, LPS induced the release of TNF- α to trigger inflammation and activated mammalian target of rapamycin (mTOR) to potentiate cell proliferation. Minocycline, which induces autophagy by inhibiting mTOR, suppresses cytokine production and cell proliferation and protects THP-1 cells from LPS toxicity. Further study demonstrated that there might be an intimate crosstalk between the inhibitor kappa B kinase (IKK)/nuclear factor-kappa B (NF- κB) signaling pathway and autophagy flux in modification of inflammatory responses. In addition, rapamycin, the mTOR inhibitor, has cooperative effect with minocycline on suppression of TNF- α release and induction of autophagy by repressing mTOR. Our data brought a novel clue to evaluate minocycline using as a potential therapeutic medicine for sepsis.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production.

          Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Minocycline: far beyond an antibiotic.

            Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic activities, and inhibition of proteolysis, angiogenesis and tumour metastasis. These findings specifically concern to minocycline as it has recently been found to have multiple non-antibiotic biological effects that are beneficial in experimental models of various diseases with an inflammatory basis, including dermatitis, periodontitis, atherosclerosis and autoimmune disorders such as rheumatoid arthritis and inflammatory bowel disease. Of note, minocycline has also emerged as the most effective tetracycline derivative at providing neuroprotection. This effect has been confirmed in experimental models of ischaemia, traumatic brain injury and neuropathic pain, and of several neurodegenerative conditions including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease, multiple sclerosis and spinal cord injury. Moreover, other pre-clinical studies have shown its ability to inhibit malignant cell growth and activation and replication of human immunodeficiency virus, and to prevent bone resorption. Considering the above-mentioned findings, this review will cover the most important topics in the pharmacology of minocycline to date, supporting its evaluation as a new therapeutic approach for many of the diseases described herein. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation.

              J Auwerx (1991)
              THP-1 is a human monocytic leukemia cell line. After treatment with phorbol esters, THP-1 cells differentiate into macrophage-like cells which mimic native monocyte-derived macrophages in several respects. Compared to other human myeloid cell lines, such as HL-60, U937, KG-1, or HEL cell lines, differentiated THP-1 cells behave more like native monocyte-derived macrophages. Because of these characteristics, the THP-1 cell line provides a valuable model for studying the mechanisms involved in macrophage differentiation, and for exploring the regulation of macrophage-specific genes as they relate to physiological functions displayed by these cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2020
                20 July 2020
                : 2020
                : 5459209
                Affiliations
                1Department of Respiratory Medicine, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang Province, China
                2Division of Infection Control and Prevention, Faculty of Medical Sciences, University of Kyoto Prefectural University of Medicine, Kyoto, Japan
                3Division of Infection Control and Prevention, Faculty of Medical Sciences, University of Fukui, Japan
                Author notes

                Guest Editor: Tao Huang

                Author information
                https://orcid.org/0000-0002-3758-7672
                https://orcid.org/0000-0001-8125-507X
                Article
                10.1155/2020/5459209
                7387962
                32766308
                e88f26ea-376f-42d6-8cdd-7a2f0ac71845
                Copyright © 2020 Jian Sun et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 April 2020
                : 16 June 2020
                Funding
                Funded by: Ministry of Education, Culture, Sports, Science and Technology
                Award ID: 24591478
                Funded by: Zhejiang Provincial Health Commission
                Award ID: 2020KY330
                Funded by: Natural Science Foundation of Zhejiang Province
                Award ID: LY18H010008
                Categories
                Research Article

                Comments

                Comment on this article