9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synthesis of a Multifunctional Graphene Oxide-Based Magnetic Nanocomposite for Efficient Removal of Cr(VI).

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel magnetic nanocomposite was synthesized using graphene oxide (GO), polyethylenimine (PEI), and Fe3O4 to removal hexavalent chromium (Cr(VI)) from water and soil. Therein, GO was functionalized with plenty of -NH2 by the modification of PEI through an amidation reaction, and the resulting GO/PEI reacted with FeSO4·7H2O and NaBH4 to obtain RGO/PEI/Fe3O4 (the optimal one is designated as ORPF) through an oxidation-reduction reaction. ORPF could effectively adsorb Cr(VI) through electrostatic attraction, and the adsorbed Cr(VI) ions were partially reduced to trivalent chromium (Cr(III)) with low toxicity by RGO (π electron). Afterward, the resulting ORPF-Cr could be conveniently removed from water with a magnet, achieving the maximum Cr(VI) removal capacity of 266.6 mg/g. Importantly, ORPF, once carried by sponge particles, could efficiently remove Cr(VI) from soil, and the resulting mixture could be facilely collected with a magnet on a filter net. Besides, the leaching experiment suggested that, when supported by filter paper, ORPF was able to decrease the number of leached Cr(VI) ions and meanwhile reduce them to Cr(III). This work provides a promising approach to remediate Cr(VI)-contaminated water and soil using a nanocomposite, which has a huge number of application prospects.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir : the ACS journal of surfaces and colloids
          American Chemical Society (ACS)
          1520-5827
          0743-7463
          July 18 2017
          : 33
          : 28
          Affiliations
          [1 ] University of Science and Technology of China , No. 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.
          Article
          10.1021/acs.langmuir.7b01293
          28665617
          e86057fc-4a42-41a5-9776-7d8af994a4d6
          History

          Comments

          Comment on this article