1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intrinsic excitability mechanisms of neuronal ensemble formation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuronal ensembles are coactive groups of cortical neurons, found in spontaneous and evoked activity, that can mediate perception and behavior. To understand the mechanisms that lead to the formation of ensembles, we co-activated layer 2/3 pyramidal neurons in brain slices from mouse visual cortex, in animals of both sexes, replicating in vitro an optogenetic protocol to generate ensembles in vivo. Using whole-cell and perforated patch-clamp pair recordings we found that, after optogenetic or electrical stimulation, coactivated neurons increased their correlated activity, a hallmark of ensemble formation. Coactivated neurons showed small biphasic changes in presynaptic plasticity, with an initial depression followed by a potentiation after a recovery period. Optogenetic and electrical stimulation also induced significant increases in frequency and amplitude of spontaneous EPSPs, even after single-cell stimulation. In addition, we observed unexpected strong and persistent increases in neuronal excitability after stimulation, with increases in membrane resistance and reductions in spike threshold. A pharmacological agent that blocks changes in membrane resistance reverted this effect. These significant increases in excitability can explain the observed biphasic synaptic plasticity. We conclude that cell-intrinsic changes in excitability are involved in the formation of neuronal ensembles. We propose an ‘iceberg’ model, by which increased neuronal excitability makes subthreshold connections suprathreshold, enhancing the effect of already existing synapses, and generating a new neuronal ensemble.

          eLife digest

          In the brain, groups of neurons that are activated together – also known as neuronal ensembles – are the basic units that underpin perception and behavior. Yet, exactly how these coactive circuits are established remains under investigation.

          In 1949, Canadian psychologist Donald Hebb proposed that, when brains learn something new, the neurons which are activated together connect to form ensembles, and their connections become stronger each time this specific piece of knowledge is recalled. This idea that ‘neurons that fire together, wire together’ can explain how memories are acquired and recalled, by strengthening their wiring.

          However, recent studies have questioned whether strengthening connections is the only mechanism by which neural ensembles can be created. Changes in the excitability of neurons (how easily they are to fire and become activated) may also play a role. In other words, ensembles could emerge because certain neurons become more excitable and fire more readily.

          To solve this conundrum, Alejandre-García et al. examined both hypotheses in the same system. Neurons in slices of the mouse visual cortex were stimulated electrically or optically, via a technique that controls neural activity with light. The activity of individual neurons and their connections was then measured with electrodes.

          Spontaneous activity among connected neurons increased after stimulation, indicative of the formation of neuronal ensembles. Connected neurons also showed small changes in the strength of their connections, which first decreased and then rebounded after an initial recovery period.

          Intriguingly, cells also showed unexpected strong and persistent increases in neuronal excitability after stimulation, such that neurons fired more readily to the same stimulus. In other words, neurons maintained a cellular memory of having been stimulated. The authors conclude that ensembles form because connected neurons become more excitable, which in turn, may strengthen connections of the circuit at a later stage.

          These results provide fresh insights about the neural circuits underpinning learning and memory. In time, the findings could also help to understand disorders such as Alzheimer’s disease and schizophrenia, which are characterised by memory impairments and disordered thinking.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Neural networks and physical systems with emergent collective computational abilities.

          J Hopfield (1982)
          Computational properties of use of biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex.

            Local microcircuits within neocortical columns form key determinants of sensory processing. Here, we investigate the excitatory synaptic neuronal network of an anatomically defined cortical column, the C2 barrel column of mouse primary somatosensory cortex. This cortical column is known to process tactile information related to the C2 whisker. Through multiple simultaneous whole-cell recordings, we quantify connectivity maps between individual excitatory neurons located across all cortical layers of the C2 barrel column. Synaptic connectivity depended strongly upon somatic laminar location of both presynaptic and postsynaptic neurons, providing definitive evidence for layer-specific signaling pathways. The strongest excitatory influence upon the cortical column was provided by presynaptic layer 4 neurons. In all layers we found rare large-amplitude synaptic connections, which are likely to contribute strongly to reliable information processing. Our data set provides the first functional description of the excitatory synaptic wiring diagram of a physiologically relevant and anatomically well-defined cortical column at single-cell resolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variability, compensation and homeostasis in neuron and network function.

              Neurons in most animals live a very long time relative to the half-lives of all of the proteins that govern excitability and synaptic transmission. Consequently, homeostatic mechanisms are necessary to ensure stable neuronal and network function over an animal's lifetime. To understand how these homeostatic mechanisms might function, it is crucial to understand how tightly regulated synaptic and intrinsic properties must be for adequate network performance, and the extent to which compensatory mechanisms allow for multiple solutions to the production of similar behaviour. Here, we use examples from theoretical and experimental studies of invertebrates and vertebrates to explore several issues relevant to understanding the precision of tuning of synaptic and intrinsic currents for the operation of functional neuronal circuits.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Role: Senior Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                04 May 2022
                2022
                : 11
                : e77470
                Affiliations
                [1 ] Department of Biological Sciences, Columbia University ( https://ror.org/00hj8s172) New York United States
                Stanford School of Medicine United States
                Emory University ( https://ror.org/03czfpz43) United States
                Stanford School of Medicine United States
                Stanford School of Medicine United States
                University of Chicago ( https://ror.org/024mw5h28) United States
                Author information
                https://orcid.org/0000-0002-2243-8703
                https://orcid.org/0000-0001-8502-1692
                https://orcid.org/0000-0003-4206-497X
                Article
                77470
                10.7554/eLife.77470
                9197391
                35506662
                e84f4360-75e7-433a-badb-b3172affb3d4
                © 2022, Alejandre-García et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 31 January 2022
                : 03 May 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000025, National Institute of Mental Health;
                Award ID: R01EY011787
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000025, National Institute of Mental Health;
                Award ID: R01MH115900
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100003141, Consejo Nacional de Ciencia y Tecnología;
                Award ID: 287725
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100003141, Consejo Nacional de Ciencia y Tecnología;
                Award ID: CVU365863
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Cell Biology
                Neuroscience
                Custom metadata
                Optogenetic and electrical stimulation of primary visual cortex neurons reveals synaptic and cell-intrinsic mechanisms that underlie neuronal ensemble formation.

                Life sciences
                ensembles,intrinsic excitability,optogenetics,visual cortex,hebbian plasticity,synaptic connection,mouse

                Comments

                Comment on this article