Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune Checkpoint Inhibitors in Triple Negative Breast Cancer: The Search for the Optimal Biomarker

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Triple negative breast cancer (TNBC) is a high-risk and aggressive malignancy characterized by the absence of estrogen receptors (ER) and progesterone receptors (PR) on the surface of malignant cells, and by the lack of overexpression of human epidermal growth factor 2 (HER2). It has limited therapeutic options compared to other subtypes of breast cancer. There is now a growing body of evidence on the role of immunotherapy in TNBC, however much of the data from clinical trials is conflicting and thus, challenging for clinicians to integrate the data into clinical practice. Landmark phase III trials using immunotherapy in the early-stage neoadjuvant setting concluded that the addition of immunotherapy to chemotherapy improved the pathologic complete response (pCR) rate compared to chemotherapy with placebo while others found no significant improvement in pCR. Phase III trials have investigated the utility of immunotherapy in previously untreated metastatic TNBC, and these studies have similarly arrived at inconsistent conclusions. Some studies showed no benefit while others demonstrated a clinically significant improvement in overall survival in the PD-L1 positive population. It is not yet clear which biomarkers are most useful, and assays for these biomarkers have not been standardized. Given the often serious and severe side effects of immunotherapy, it is important and necessary to identify predictive biomarkers of response and resistance in order to enhance patient selection. In this review, we will discuss both the challenges of traditional biomarkers and the opportunities of emerging biomarkers for patient selection.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade

          The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers' tissue of origin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients

            Pre-clinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti-PD-1 immunotherapy (n=112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders (R) versus non-responders (NR). Analysis of patient fecal microbiome samples (n=43, 30R, 13NR) showed significantly higher alpha diversity (p<0.01) and relative abundance of Ruminococcaceae bacteria (p<0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in R including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and anti-tumor immunity in responding patients with a favorable gut microbiome, as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular and genetic properties of tumors associated with local immune cytolytic activity.

              How the genomic landscape of a tumor shapes and is shaped by anti-tumor immunity has not been systematically explored. Using large-scale genomic data sets of solid tissue tumor biopsies, we quantified the cytolytic activity of the local immune infiltrate and identified associated properties across 18 tumor types. The number of predicted MHC Class I-associated neoantigens was correlated with cytolytic activity and was lower than expected in colorectal and other tumors, suggesting immune-mediated elimination. We identified recurrently mutated genes that showed positive association with cytolytic activity, including beta-2-microglobulin (B2M), HLA-A, -B and -C and Caspase 8 (CASP8), highlighting loss of antigen presentation and blockade of extrinsic apoptosis as key strategies of resistance to cytolytic activity. Genetic amplifications were also associated with high cytolytic activity, including immunosuppressive factors such as PDL1/2 and ALOX12B/15B. Our genetic findings thus provide evidence for immunoediting in tumors and uncover mechanisms of tumor-intrinsic resistance to cytolytic activity.
                Bookmark

                Author and article information

                Journal
                Biomark Insights
                Biomark Insights
                BMI
                spbmi
                Biomarker Insights
                SAGE Publications (Sage UK: London, England )
                1177-2719
                22 February 2022
                2022
                : 17
                : 11772719221078774
                Affiliations
                [1 ]Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
                [2 ]Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
                Author notes
                [*]Coral Omene, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA. Email: co273@ 123456cinj.rutgers.edu
                Author information
                https://orcid.org/0000-0002-0047-5108
                https://orcid.org/0000-0001-7824-1478
                Article
                10.1177_11772719221078774
                10.1177/11772719221078774
                8874164
                35221668
                e842c145-eaeb-4fd1-ae50-72dbceab4e64
                © The Author(s) 2022

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 24 September 2021
                : 4 January 2022
                Categories
                Review
                Custom metadata
                January-December 2022
                ts1

                Clinical chemistry
                immunotherapy,immune checkpoint inhibitors,triple negative breast cancer,pd-l1,tumor infiltrating lymphocytes,tumor mutational burden,mismatch repair,cell-free dna,microbiome,endogenous retroviruses

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content359

                Cited by16

                Most referenced authors3,159