3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ti-Bearing Minerals: from the Ocean Floor to Subduction and Back

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rutile, titanite, and ilmenite are the most common Ti-bearing minerals in metamorphic rocks. Experimental constraints have shown that titanite is stable at low-grade metamorphic conditions, rutile at high pressure (HP), and ilmenite at high temperature, low pressure (HT-LP) conditions. Yet, petrological evidence suggests that titanite can also be stable at low temperature, HP (LT-HP). This implies that both titanite and rutile can be used to develop proxies to track HP metamorphism, which can have interesting applications. In this study, we have investigated the natural occurrence and chemistry of Ti-bearing minerals in gabbroic rocks and basalts that record different degrees of metamorphism, including LP amphibole-bearing gabbros from the ocean floor (Mid-Atlantic and Indian ridge IODP LEGs) and from an obducted ophiolite (Chenaillet) and HP Alpine metagabbros and metabasalts, including blueschist and eclogite facies rocks from the Western Alps and Corsica. We have performed detailed petrography, Raman spectroscopy and analyzed major and trace elements mineral chemistry using EPMA and LA-ICPMS. We found that rutile is stable at low pressure (< 2 kbar) in ocean-floor amphibole-bearing gabbros, lower than experimental constraints had previously suggested. Rutile is also found in eclogitic metagabbros from the Western Alps and can be chemically distinguished from LP rutile. Blueschist metagabbros from the Western Alps and eclogitic metabasalts from Corsica have titanite stable instead of rutile. While the titanite to rutile transition is pressure- and temperature-dependent, we demonstrate how small variations in bulk-rock Ti/Ca and Ca/Al values within the NCKFMASHTO chemical system may shift their stabilities. High-pressure titanite from these metamafic rocks exhibits La depletion and low La/SmN values in comparison to titanite from amphibolite-facies mafic rocks. La/SmN or Nb together with Yb and V can be used to distinguish HP titanite from titanite formed under other P–T settings. These new systematics can be useful in studies using detrital Ti-bearing minerals to probe the HP metamorphic record through time.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The composition of the Earth

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Petrology
                Oxford University Press (OUP)
                0022-3530
                1460-2415
                July 2023
                July 01 2023
                July 2023
                July 01 2023
                June 14 2023
                : 64
                : 7
                Article
                10.1093/petrology/egad041
                e8254b61-4f79-4a5c-a736-21c31e889497
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article