32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A general method for detecting and sizing large plasmids.

      1 , ,
      Analytical biochemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have devised a method for detecting and estimating the sizes of large bacterial plasmids in the presence of genomic DNA by pulsed-field gel electrophoresis (PFGE). Bacteria harboring plasmids were embedded in agarose and lysed using a rapid protocol. Plugs were incubated with S1 nuclease and subjected to PFGE in agarose gels. S1 nuclease converted supercoiled plasmids into full-length linear molecules. Large plasmids migrated as discrete bands that were readily observed after ethidium staining. Their sizes were reliably estimated by comparison with linear DNA markers. Without S1 digestion, supercoiled plasmids migrated at rates that were not a simple function of their molecular weights, making size determinations problematic. S1-PFGE detected megaplasmids up to 609 kilobases (kb) in six genera of bacteria (Agrobacterium, Escherichia, Klebsiella, Pseudomonas, Salmonella, and Staphylococcus). The procedure gave size values consistent with previous estimates for characterized megaplasmids. Eight new plasmids between 102 and 316 kb were discovered in Klebsiella and Staphylococcus. S1-PFGE avoids the difficulties of plasmid isolation, eliminates the preparation of probes, and does not require knowledge of restriction enzyme cleavage sites. It detects multiple large plasmids up to the limits of PFGE and can be used to screen for megaplasmids in many strains simultaneously.

          Related collections

          Author and article information

          Journal
          Anal Biochem
          Analytical biochemistry
          Elsevier BV
          0003-2697
          0003-2697
          Apr 10 1995
          : 226
          : 2
          Affiliations
          [1 ] Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, California 92350, USA.
          Article
          S0003-2697(85)71220-1
          10.1006/abio.1995.1220
          7793624
          e7cb8fa7-9eb9-4b3e-94da-8d5491673c81
          History

          Comments

          Comment on this article