1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A personalized classification of behavioral severity of autism spectrum disorder using a comprehensive machine learning framework

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism Spectrum Disorder (ASD) is characterized as a neurodevelopmental disorder with a heterogeneous nature, influenced by genetics and exhibiting diverse clinical presentations. In this study, we dissect Autism Spectrum Disorder (ASD) into its behavioral components, mirroring the diagnostic process used in clinical settings. Morphological features are extracted from magnetic resonance imaging (MRI) scans, found in the publicly available dataset ABIDE II, identifying the most discriminative features that differentiate ASD within various behavioral domains. Then, each subject is categorized as having severe, moderate, or mild ASD, or typical neurodevelopment (TD), based on the behavioral domains of the Social Responsiveness Scale (SRS). Through this study, multiple artificial intelligence (AI) models are utilized for feature selection and classifying each ASD severity and behavioural group. A multivariate feature selection algorithm, investigating four different classifiers with linear and non-linear hypotheses, is applied iteratively while shuffling the training-validation subjects to find the set of cortical regions with statistically significant association with ASD. A set of six classifiers are optimized and trained on the selected set of features using 5-fold cross-validation for the purpose of severity classification for each behavioural group. Our AI-based model achieved an average accuracy of 96%, computed as the mean accuracy across the top-performing AI models for feature selection and severity classification across the different behavioral groups. The proposed AI model has the ability to accurately differentiate between the functionalities of specific brain regions, such as the left and right caudal middle frontal regions. We propose an AI-based model that dissects ASD into behavioral components. For each behavioral component, the AI-based model is capable of identifying the brain regions which are associated with ASD as well as utilizing those regions for diagnosis. The proposed system can increase the speed and accuracy of the diagnostic process and result in improved outcomes for individuals with ASD, highlighting the potential of AI in this area.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.

          In this study, we have assessed the validity and reliability of an automated labeling system that we have developed for subdividing the human cerebral cortex on magnetic resonance images into gyral based regions of interest (ROIs). Using a dataset of 40 MRI scans we manually identified 34 cortical ROIs in each of the individual hemispheres. This information was then encoded in the form of an atlas that was utilized to automatically label ROIs. To examine the validity, as well as the intra- and inter-rater reliability of the automated system, we used both intraclass correlation coefficients (ICC), and a new method known as mean distance maps, to assess the degree of mismatch between the manual and the automated sets of ROIs. When compared with the manual ROIs, the automated ROIs were highly accurate, with an average ICC of 0.835 across all of the ROIs, and a mean distance error of less than 1 mm. Intra- and inter-rater comparisons yielded little to no difference between the sets of ROIs. These findings suggest that the automated method we have developed for subdividing the human cerebral cortex into standard gyral-based neuroanatomical regions is both anatomically valid and reliable. This method may be useful for both morphometric and functional studies of the cerebral cortex as well as for clinical investigations aimed at tracking the evolution of disease-induced changes over time, including clinical trials in which MRI-based measures are used to examine response to treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Measuring the thickness of the human cerebral cortex from magnetic resonance images.

            Accurate and automated methods for measuring the thickness of human cerebral cortex could provide powerful tools for diagnosing and studying a variety of neurodegenerative and psychiatric disorders. Manual methods for estimating cortical thickness from neuroimaging data are labor intensive, requiring several days of effort by a trained anatomist. Furthermore, the highly folded nature of the cortex is problematic for manual techniques, frequently resulting in measurement errors in regions in which the cortical surface is not perpendicular to any of the cardinal axes. As a consequence, it has been impractical to obtain accurate thickness estimates for the entire cortex in individual subjects, or group statistics for patient or control populations. Here, we present an automated method for accurately measuring the thickness of the cerebral cortex across the entire brain and for generating cross-subject statistics in a coordinate system based on cortical anatomy. The intersubject standard deviation of the thickness measures is shown to be less than 0.5 mm, implying the ability to detect focal atrophy in small populations or even individual subjects. The reliability and accuracy of this new method are assessed by within-subject test-retest studies, as well as by comparison of cross-subject regional thickness measures with published values.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014

              Problem/Condition Autism spectrum disorder (ASD). Period Covered 2014. Description of System The Autism and Developmental Disabilities Monitoring (ADDM) Network is an active surveillance system that provides estimates of the prevalence of autism spectrum disorder (ASD) among children aged 8 years whose parents or guardians reside within 11 ADDM sites in the United States (Arizona, Arkansas, Colorado, Georgia, Maryland, Minnesota, Missouri, New Jersey, North Carolina, Tennessee, and Wisconsin). ADDM surveillance is conducted in two phases. The first phase involves review and abstraction of comprehensive evaluations that were completed by professional service providers in the community. Staff completing record review and abstraction receive extensive training and supervision and are evaluated according to strict reliability standards to certify effective initial training, identify ongoing training needs, and ensure adherence to the prescribed methodology. Record review and abstraction occurs in a variety of data sources ranging from general pediatric health clinics to specialized programs serving children with developmental disabilities. In addition, most of the ADDM sites also review records for children who have received special education services in public schools. In the second phase of the study, all abstracted information is reviewed systematically by experienced clinicians to determine ASD case status. A child is considered to meet the surveillance case definition for ASD if he or she displays behaviors, as described on one or more comprehensive evaluations completed by community-based professional providers, consistent with the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) diagnostic criteria for autistic disorder; pervasive developmental disorder–not otherwise specified (PDD-NOS, including atypical autism); or Asperger disorder. This report provides updated ASD prevalence estimates for children aged 8 years during the 2014 surveillance year, on the basis of DSM-IV-TR criteria, and describes characteristics of the population of children with ASD. In 2013, the American Psychiatric Association published the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), which made considerable changes to ASD diagnostic criteria. The change in ASD diagnostic criteria might influence ADDM ASD prevalence estimates; therefore, most (85%) of the records used to determine prevalence estimates based on DSM-IV-TR criteria underwent additional review under a newly operationalized surveillance case definition for ASD consistent with the DSM-5 diagnostic criteria. Children meeting this new surveillance case definition could qualify on the basis of one or both of the following criteria, as documented in abstracted comprehensive evaluations: 1) behaviors consistent with the DSM-5 diagnostic features; and/or 2) an ASD diagnosis, whether based on DSM-IV-TR or DSM-5 diagnostic criteria. Stratified comparisons of the number of children meeting either of these two case definitions also are reported. Results For 2014, the overall prevalence of ASD among the 11 ADDM sites was 16.8 per 1,000 (one in 59) children aged 8 years. Overall ASD prevalence estimates varied among sites, from 13.1–29.3 per 1,000 children aged 8 years. ASD prevalence estimates also varied by sex and race/ethnicity. Males were four times more likely than females to be identified with ASD. Prevalence estimates were higher for non-Hispanic white (henceforth, white) children compared with non-Hispanic black (henceforth, black) children, and both groups were more likely to be identified with ASD compared with Hispanic children. Among the nine sites with sufficient data on intellectual ability, 31% of children with ASD were classified in the range of intellectual disability (intelligence quotient [IQ] 85). The distribution of intellectual ability varied by sex and race/ethnicity. Although mention of developmental concerns by age 36 months was documented for 85% of children with ASD, only 42% had a comprehensive evaluation on record by age 36 months. The median age of earliest known ASD diagnosis was 52 months and did not differ significantly by sex or race/ethnicity. For the targeted comparison of DSM-IV-TR and DSM-5 results, the number and characteristics of children meeting the newly operationalized DSM-5 case definition for ASD were similar to those meeting the DSM-IV-TR case definition, with DSM-IV-TR case counts exceeding DSM-5 counts by less than 5% and approximately 86% overlap between the two case definitions (kappa = 0.85). Interpretation Findings from the ADDM Network, on the basis of 2014 data reported from 11 sites, provide updated population-based estimates of the prevalence of ASD among children aged 8 years in multiple communities in the United States. The overall ASD prevalence estimate of 16.8 per 1,000 children aged 8 years in 2014 is higher than previously reported estimates from the ADDM Network. Because the ADDM sites do not provide a representative sample of the entire United States, the combined prevalence estimates presented in this report cannot be generalized to all children aged 8 years in the United States. Consistent with reports from previous ADDM surveillance years, findings from 2014 were marked by variation in ASD prevalence when stratified by geographic area, sex, and level of intellectual ability. Differences in prevalence estimates between black and white children have diminished in most sites, but remained notable for Hispanic children. For 2014, results from application of the DSM-IV-TR and DSM-5 case definitions were similar, overall and when stratified by sex, race/ethnicity, DSM-IV-TR diagnostic subtype, or level of intellectual ability. Public Health Action Beginning with surveillance year 2016, the DSM-5 case definition will serve as the basis for ADDM estimates of ASD prevalence in future surveillance reports. Although the DSM-IV-TR case definition will eventually be phased out, it will be applied in a limited geographic area to offer additional data for comparison. Future analyses will examine trends in the continued use of DSM-IV-TR diagnoses, such as autistic disorder, PDD-NOS, and Asperger disorder in health and education records, documentation of symptoms consistent with DSM-5 terminology, and how these trends might influence estimates of ASD prevalence over time. The latest findings from the ADDM Network provide evidence that the prevalence of ASD is higher than previously reported estimates and continues to vary among certain racial/ethnic groups and communities. With prevalence of ASD ranging from 13.1 to 29.3 per 1,000 children aged 8 years in different communities throughout the United States, the need for behavioral, educational, residential, and occupational services remains high, as does the need for increased research on both genetic and nongenetic risk factors for ASD.
                Bookmark

                Author and article information

                Contributors
                aselba01@louisville.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 October 2023
                9 October 2023
                2023
                : 13
                : 17048
                Affiliations
                [1 ]Bioengineering Department, University of Louisville, ( https://ror.org/01ckdn478) Louisville, KY 40292 USA
                [2 ]UT Southwestern Medical Center, UT Southwestern Medical Center, ( https://ror.org/00t9vx427) Dallas, TX 75390 USA
                [3 ]GRID grid.29857.31, ISNI 0000 0001 2097 4281, Electrical and Computer Engineering, , Penn State Erie-The Behrend College, ; Erie, PA 16563 USA
                [4 ]GRID grid.267313.2, ISNI 0000 0000 9482 7121, Lyda Hill Department of Bioinformatics, , UT Southwestern Medical Center, ; Dallas, TX 75390 USA
                [5 ]Department of Neurology and Pediatric Research Institute, University of Louisville, ( https://ror.org/01ckdn478) Louisville, KY 40202 USA
                Article
                43478
                10.1038/s41598-023-43478-z
                10562430
                37813914
                e7ba2327-fb2d-417f-bd5f-53d6383d0080
                © Springer Nature Limited 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 March 2023
                : 25 September 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000001, National Science Foundation;
                Award ID: PFI-TT2213985
                Award ID: PFI-TT2213985
                Award ID: PFI-TT2213985
                Award ID: PFI-TT2213985
                Award ID: PFI-TT2213985
                Award ID: PFI-TT2213985
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000066, National Institute of Environmental Health Sciences;
                Award ID: P30ES030283
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2023

                Uncategorized
                engineering,biomedical engineering,neuroscience,computational neuroscience,neural circuits,neurology,neurological disorders,neurodevelopmental disorders

                Comments

                Comment on this article