45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential brain effects of laser and needle acupuncture at LR8 using functional MRI

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          While needle acupuncture is a well-accepted technique, laser acupuncture is being increasingly used in clinical practice. The differential effects of the two techniques are of interest. We examine this in relation to brain effects of activation of LR8, a putative acupuncture point for depression, using functional MRI (fMRI).

          Methods

          Sixteen healthy participants were randomised to receive low intensity laser acupuncture to LR8 on one side and needle acupuncture to the contralateral LR8. Stimulation was in an on-off block design and brain patterns were recorded under fMRI.

          Results

          Significant activation occurred in the left precuneus during laser acupuncture compared with needle acupuncture and significant activation occurred in the left precentral gyrus during needle acupuncture compared with laser acupuncture.

          Conclusions

          Laser and needle acupuncture at LR8 in healthy participants produced different brain patterns. Laser acupuncture activated the precuneus relevant to mood in the posterior default mode network while needle acupuncture activated the parietal cortical region associated with the primary motor cortex. Further investigations are warranted to evaluate the clinical relevance of these effects.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI.

          Clinical and experimental data indicate that most acupuncture clinical results are mediated by the central nervous system, but the specific effects of acupuncture on the human brain remain unclear. Even less is known about its effects on the cerebellum. This fMRI study demonstrated that manual acupuncture at ST 36 (Stomach 36, Zusanli), a main acupoint on the leg, modulated neural activity at multiple levels of the cerebro-cerebellar and limbic systems. The pattern of hemodynamic response depended on the psychophysical response to needle manipulation. Acupuncture stimulation typically elicited a composite of sensations termed deqi that is related to clinical efficacy according to traditional Chinese medicine. The limbic and paralimbic structures of cortical and subcortical regions in the telencephalon, diencephalon, brainstem and cerebellum demonstrated a concerted attenuation of signal intensity when the subjects experienced deqi. When deqi was mixed with sharp pain, the hemodynamic response was mixed, showing a predominance of signal increases instead. Tactile stimulation as control also elicited a predominance of signal increase in a subset of these regions. The study provides preliminary evidence for an integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 that correlates with the psychophysical response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acupuncture modulates resting state connectivity in default and sensorimotor brain networks.

            Previous studies have defined low-frequency, spatially consistent networks in resting fMRI data which may reflect functional connectivity. We sought to explore how a complex somatosensory stimulation, acupuncture, influences intrinsic connectivity in two of these networks: the default mode network (DMN) and sensorimotor network (SMN). We analyzed resting fMRI data taken before and after verum and sham acupuncture. Electrocardiography data were used to infer autonomic modulation through measures of heart rate variability (HRV). Probabilistic independent component analysis was used to separate resting fMRI data into DMN and SMN components. Following verum, but not sham, acupuncture there was increased DMN connectivity with pain (anterior cingulate cortex (ACC), periaqueductal gray), affective (amygdala, ACC), and memory (hippocampal formation, middle temporal gyrus) related brain regions. Furthermore, increased DMN connectivity with the hippocampal formation, a region known to support memory and interconnected with autonomic brain regions, was negatively correlated with acupuncture-induced increase in a sympathetic related HRV metric (LFu), and positively correlated with a parasympathetic related metric (HFu). Following verum, but not sham, acupuncture there was also increased SMN connectivity with pain-related brain regions (ACC, cerebellum). We attribute differences between verum and sham acupuncture to more varied and stronger sensations evoked by verum acupuncture. Our results demonstrate for the first time that acupuncture can enhance the post-stimulation spatial extent of resting brain networks to include anti-nociceptive, memory, and affective brain regions. This modulation and sympathovagal response may relate to acupuncture analgesia and other potential therapeutic effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI.

              The goal of this functional magnetic resonance imaging (fMRI) study was to compare the central effects of electroacupuncture at different frequencies with traditional Chinese manual acupuncture. Although not as time-tested as manual acupuncture, electroacupuncture does have the advantage of setting stimulation frequency and intensity objectively and quantifiably. Manual acupuncture, electroacupuncture at 2 Hz and 100 Hz, and tactile control stimulation were carried out at acupoint ST-36. Overall, electroacupuncture (particularly at low frequency) produced more widespread fMRI signal increase than manual acupuncture did, and all acupuncture stimulations produced more widespread responses than did our placebo-like tactile control stimulation. Acupuncture produced hemodynamic signal increase in the anterior insula, and decrease in limbic and paralimbic structures including the amygdala, anterior hippocampus, and the cortices of the subgenual and retrosplenial cingulate, ventromedial prefrontal cortex, frontal, and temporal poles, results not seen for tactile control stimulation. Only electroacupuncture produced significant signal increase in the anterior middle cingulate cortex, whereas 2-Hz electroacupuncture produced signal increase in the pontine raphe area. All forms of stimulation (acupuncture and control) produced signal increase in SII. These findings support a hypothesis that the limbic system is central to acupuncture effect regardless of specific acupuncture modality, although some differences do exist in the underlying neurobiologic mechanisms for these modalities, and may aid in optimizing their future usage in clinical applications. Copyright 2004 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Acupunct Med
                Acupunct Med
                acupmed
                aim
                Acupuncture in Medicine
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                0964-5284
                1759-9873
                September 2013
                6 August 2013
                : 31
                : 3
                : 282-289
                Affiliations
                [1 ]School of Psychiatry, University of New South Wales and Neuropsychiatric Institute (NPI), Prince of Wales Hospital , Sydney, New South Wales, Australia
                [2 ]Macquarie Centre for Cognitive Sciences (MACCS), Macquarie University, North Ryde , Sydney, New South Wales, Australia
                [3 ]Rehabilitation Medicine University Clinic, Danderyds Hospital AB , Stockholm, Sweden
                Author notes
                [Correspondence to ] Professor Perminder Sachdev, School of Psychiatry, University of New South Wales and Neuropsychiatric Institute (NPI), Prince of Wales Hospital, Randwick, NSW 2031, Australia; p.sachdev@ 123456unsw.edu.au
                Article
                acupmed-2012-010297
                10.1136/acupmed-2012-010297
                3786613
                23920052
                e785319a-bae7-4ab8-9b3c-1ddf1e34fc8c
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

                History
                : 11 December 2012
                : 30 May 2013
                Categories
                1506
                Original Paper
                Custom metadata
                unlocked

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article