12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microenvironmental Heterogeneity in Brain Malignancies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain tumors are among the deadliest malignancies. The brain tumor microenvironment (TME) hosts a unique collection of cells, soluble factors, and extracellular matrix components that regulate disease evolution of both primary and metastatic brain malignancies. It is established that macrophages and other myeloid cells are abundant in the brain TME and strongly correlate with aggressive phenotypes and distinct genetic signatures, while lymphoid cells are less frequent but are now known to have a pronounced effect on disease progression. Different types of brain tumors vary widely in their microenvironmental contexture, and the proportion of various stromal components impacts tumor biology. Indeed, emerging evidence suggests an intimate link between the molecular signature of tumor cells and the composition of the TME, shedding light on the mechanisms which underlie microenvironmental heterogeneity in brain cancer. In this review, we discuss the association between TME composition and the diverse molecular profiles of primary gliomas and brain metastases. We also discuss the implications of these associations on the efficacy of immunotherapy in brain malignancies. An appreciation for the causes and functional consequences of microenvironmental heterogeneity in brain cancer will be of crucial importance to the rational design of microenvironment-targeted therapies for these deadly diseases.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression

          We introduce the Microenvironment Cell Populations-counter (MCP-counter) method, which allows the robust quantification of the absolute abundance of eight immune and two stromal cell populations in heterogeneous tissues from transcriptomic data. We present in vitro mRNA mixture and ex vivo immunohistochemical data that quantitatively support the validity of our method’s estimates. Additionally, we demonstrate that MCP-counter overcomes several limitations or weaknesses of previously proposed computational approaches. MCP-counter is applied to draw a global picture of immune infiltrates across human healthy tissues and non-hematopoietic human tumors and recapitulates microenvironment-based patient stratifications associated with overall survival in lung adenocarcinoma and colorectal and breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1070-5) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.

            Previously undescribed prognostic subclasses of high-grade astrocytoma are identified and discovered to resemble stages in neurogenesis. One tumor class displaying neuronal lineage markers shows longer survival, while two tumor classes enriched for neural stem cell markers display equally short survival. Poor prognosis subclasses exhibit markers either of proliferation or of angiogenesis and mesenchyme. Upon recurrence, tumors frequently shift toward the mesenchymal subclass. Chromosomal locations of genes distinguishing tumor subclass parallel DNA copy number differences between subclasses. Functional relevance of tumor subtype molecular signatures is suggested by the ability of cell line signatures to predict neurosphere growth. A robust two-gene prognostic model utilizing PTEN and DLL3 expression suggests that Akt and Notch signaling are hallmarks of poor prognosis versus better prognosis gliomas, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma

              Diverse genetic, epigenetic and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the TCGA, functional approaches and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4 , EGFR and PDGFRA loci, and by mutations in the NF1 locus, that each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity and their modulation by genetic drivers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                01 October 2019
                2019
                : 10
                : 2294
                Affiliations
                [1] 1Rosalind and Morris Goodman Cancer Research Centre, McGill University , Montreal, QC, Canada
                [2] 2Department of Physiology, Faculty of Medicine, McGill University , Montreal, QC, Canada
                [3] 3Department of Human Genetics, Faculty of Medicine, McGill University , Montreal, QC, Canada
                Author notes

                Edited by: Leila Akkari, The Netherlands Cancer Institute (NKI), Netherlands

                Reviewed by: Catherine Sautes-Fridman, INSERM U1138 Centre de Recherche des Cordeliers, France; David George Menter, University of Texas MD Anderson Cancer Center, United States

                *Correspondence: Logan A. Walsh logan.walsh@ 123456mcgill.ca

                This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.02294
                6779728
                31632393
                e72b15e4-2c9b-4726-989b-66ec477594ec
                Copyright © 2019 Perus and Walsh.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 June 2019
                : 11 September 2019
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 170, Pages: 15, Words: 12810
                Categories
                Immunology
                Review

                Immunology
                brain cancer,glioblastoma,glioma,brain metastasis,tumor microenvironment,immunotherapy
                Immunology
                brain cancer, glioblastoma, glioma, brain metastasis, tumor microenvironment, immunotherapy

                Comments

                Comment on this article