2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioinspired Green Synthesis of Silver Nanoparticles Using Three Plant Extracts and Their Antibacterial Activity against Rice Bacterial Leaf Blight Pathogen Xanthomonas oryzae pv. oryzae

      , , , , , , , , , ,
      Plants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is responsible for a significant reduction in rice production. Due to the small impact on the environment, biogenic nanomaterials are regarded as a new type of antibacterial agent. In this research, three colloids of silver nanoparticles (AgNPs) were synthesized with different biological materials such as Arctium lappa fruit, Solanum melongena leaves, and Taraxacum mongolicum leaves, and called Al-AgNPs, Sm-AgNPs and Tm-AgNPs, respectively. The appearance of brown colloids and the UV-Visible spectroscopy analysis proved the successful synthesis of the three colloids of AgNPs. Moreover, FTIR and XRD analysis revealed the formation of AgNPs structure. The SEM and TEM analysis indicated that the average diameters of the three synthesized spherical AgNPs were 20.18 nm, 21.00 nm, and 40.08 nm, respectively. The three botanical AgNPs had the strongest bacteriostatic against Xoo strain C2 at 20 μg/mL with the inhibition zone of 16.5 mm, 14.5 mm, and 12.4 mm, while bacterial numbers in a liquid broth (measured by OD600) decreased by 72.10%, 68.19%, and 65.60%, respectively. Results showed that the three AgNPs could inhibit biofilm formation and swarming motility of Xoo. The ultrastructural observation showed that Al-AgNPs adhered to the surface of bacteria and broke the bacteria. Overall, the three synthetic AgNPs could be used to inhibit the pathogen Xoo of rice bacterial leaf blight.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Synthesis of silver nanoparticles: chemical, physical and biological methods

          Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This review presents an overview of silver nanoparticle preparation by physical, chemical, and biological synthesis. The aim of this review article is, therefore, to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biofilm infections, their resilience to therapy and innovative treatment strategies.

            Biofilm formation of microorganisms causes persistent tissue and foreign body infections resistant to treatment with antimicrobial agents. Up to 80% of human bacterial infections are biofilm associated; such infections are most frequently caused by Staphylococcus epidermidis, Pseudomonas aeruginosa, Staphylococcus aureus and Enterobacteria such as Escherichia coli. The accurate diagnosis of biofilm infections is often difficult, which prevents the appropriate choice of treatment. As biofilm infections significantly contribute to patient morbidity and substantial healthcare costs, novel strategies to treat these infections are urgently required. Nucleotide second messengers, c-di-GMP, (p)ppGpp and potentially c-di-AMP, are major regulators of biofilm formation and associated antibiotic tolerance. Consequently, different components of these signalling networks might be appropriate targets for antibiofilm therapy in combination with antibiotic treatment strategies. In addition, cyclic di-nucleotides are microbial-associated molecular patterns with an almost universal presence. Their conserved structures sensed by the eukaryotic host have a widespread effect on the immune system. Thus, cyclic di-nucleotides are also potential immunotherapeutic agents to treat antibiotic-resistant bacterial infections. © 2012 The Association for the Publication of the Journal of Internal Medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Silver nanoparticles: Synthesis, medical applications and biosafety

              Silver nanoparticles (AgNPs) have been one of the most attractive nanomaterials in biomedicine due to their unique physicochemical properties. In this paper, we review the state-of-the-art advances of AgNPs in the synthesis methods, medical applications and biosafety of AgNPs. The synthesis methods of AgNPs include physical, chemical and biological routes. AgNPs are mainly used for antimicrobial and anticancer therapy, and also applied in the promotion of wound repair and bone healing, or as the vaccine adjuvant, anti-diabetic agent and biosensors. This review also summarizes the biological action mechanisms of AgNPs, which mainly involve the release of silver ions (Ag+), generation of reactive oxygen species (ROS), destruction of membrane structure. Despite these therapeutic benefits, their biological safety problems such as potential toxicity on cells, tissue, and organs should be paid enough attention. Besides, we briefly introduce a new type of Ag particles smaller than AgNPs, silver Ångstrom (Å, 1 Å = 0.1 nm) particles (AgÅPs), which exhibit better biological activity and lower toxicity compared with AgNPs. Finally, we conclude the current challenges and point out the future development direction of AgNPs.
                Bookmark

                Author and article information

                Contributors
                Journal
                PLANCD
                Plants
                Plants
                MDPI AG
                2223-7747
                November 2022
                October 28 2022
                : 11
                : 21
                : 2892
                Article
                10.3390/plants11212892
                e729df07-8640-435c-8585-c57166abb3fb
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article