6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enhanced mineralization of atrazine by surface induced hydroxyl radicals over light-weight granular mixed-quartz sands with ozone

      , , , , , , ,
      Water Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A light-weight granular mixed-quartz sand (denoted as L-GQS) combined with stirring-assisted bubble column reactor was firstly applied in catalytic ozonation of atrazine. The L-GQS, with a density of 2.36 g cm-3 and average diameter of ca. of 4 mm, was readily churned up and uniformly distributed within the solution in the reactor. The introduction of L-GQS was found to exhibit enhanced catalytic ozonation of atrazine, with the increase in degradation rate and the dissolved organic carbon (DOC) removal being more than 2-fold for the catalytic process (L-GQS dosage = 5 g L-1, [atrazine]0 = 50 μM, [O3] = 25 mg L-1, gas flow = 0.2 L min-1, at pH 7.0 and 293 K). The L-GQS settled at the bottom of the reactor after experimentation, allowing its easy separation from the solution. A complete characterization of the material (XRD, XPS, FTIR, FE-SEM/EDS, BET and pHpzc) revealed that L-GQS consisted of α-quartz, β-cristobalite, anorthoclase and small amount of iron oxy-hydroxides. Hydroxyl groups, Bronsted acid sites and Lewis acid sites on the surface of L-GQS all contributed to the atrazine adsorption, ozone decomposition and ·OH generation. The L-GQS catalyzed ozonation exhibited superior atrazine degradation and mineralization rates in a wide range of pH (3.0-9.0) and reaction temperatures (278 K-293 K). Also, an enhancement of DOC abatement was observed both in presence of natural organic matter isolates and natural water matrices (river water) when L-GQS was used. Finally, the degradation mechanism was proposed, based on the intermediates and by-products formation analyzed by LC-QTOF-MS/MS and ionic chromatography. Our results indicate that the L-GQS combined with stirring-assisted bubble column reactor could be utilized as an enhancement of ozone-based advanced oxidation processes.

          Related collections

          Author and article information

          Journal
          Water Research
          Water Research
          Elsevier BV
          00431354
          February 2019
          February 2019
          : 149
          : 136-148
          Article
          10.1016/j.watres.2018.11.002
          30439577
          e71d89be-fa7b-4f22-bb14-d44e9eefc176
          © 2019

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article