158
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      UbcH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids

      research-article
      , , ,
      Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the functional interaction between ubiquitin conjugating enzymes (E2s) and ubiquitin ligases (E3s) is essential in ubiquitin (Ub) signaling, the criteria that define an active E2–E3 pair are not well-established. The human E2 UbcH7 (Ube2L3) shows broad specificity for HECT-type E3s 1 , but often fails to function with RING E3s in vitro despite forming specific complexes 24 . Structural comparisons of inactive UbcH7/RING complexes with active UbcH5/RING complexes reveal no defining differences 3, 4 , highlighting a gap in our understanding of Ub transfer. We show that, unlike many E2s that transfer Ub with RINGs, UbcH7 lacks intrinsic, E3-independent reactivity with lysine, explaining its preference for HECTs. Despite lacking lysine reactivity, UbcH7 exhibits activity with the RING-In Between-RING (RBR) family of E3s that includes Parkin and human homologue of ariadne (HHARI) 5, 6 . Found in all eukaryotes 7 , RBRs regulate processes such as translation 8 and immune signaling 9 . RBRs contain a canonical C3HC4-type RING, followed by two conserved Cys/His-rich Zn 2+-binding domains, In-Between-RING (IBR) and RING2 domains, which together define this E3 family 7 . Here we show that RBRs function like RING/HECT hybrids: they bind E2s via a RING domain, but transfer Ub through an obligate thioester-linked Ub (denoted ‘~Ub’), requiring a conserved cysteine residue in RING2. Our results define the functional cadre of E3s for UbcH7, an E2 involved in cell proliferation 10 and immune function 11 , and suggest a novel mechanism for an entire class of E3s.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Overcoming expression and purification problems of RhoGDI using a family of "parallel" expression vectors.

          We describe the construction of expression vectors based on three of the most frequently used gene fusion affinity tags [glutathione S-transferase (GST), maltose binding protein (MBP), and the His6 peptide]. The polylinkers of pGEX4T1, pMal-c2, and a pET vector were replaced with the polylinker isolated from the baculovirus expression plasmid pFastBac. Once appropriate restriction sites have been introduced into a gene, it can be fused to all three affinity tags with little effort, allowing expression-screening experiments to be performed efficiently. We discuss the development and use of these vectors with respect to overcoming purification problems encountered for the RhoA GDP/GTP nucleotide dissociation inhibitor (RhoGDI) and their advantages over commercially available expression vectors. Copyright 1999 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade.

            The E6AP ubiquitin-protein ligase (E3) mediates the human papillomavirus-induced degradation of the p53 tumor suppressor in cervical cancer and is mutated in Angelman syndrome, a neurological disorder. The crystal structure of the catalytic hect domain of E6AP reveals a bilobal structure with a broad catalytic cleft at the junction of the two lobes. The cleft consists of conserved residues whose mutation interferes with ubiquitin-thioester bond formation and is the site of Angelman syndrome mutations. The crystal structure of the E6AP hect domain bound to the UbcH7 ubiquitin-conjugating enzyme (E2) reveals the determinants of E2-E3 specificity and provides insights into the transfer of ubiquitin from the E2 to the E3.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex.

              In E1-E2-E3 ubiquitin (Ub) conjugation cascades, the E2 first forms a transient E2 approximately Ub covalent complex and then interacts with an E3 for Ub transfer. For cascades involving E3s in the HECT class, Ub is transferred from an associated E2 to the acceptor cysteine in the HECT domain C lobe. To gain insights into this process, we determined the crystal structure of a complex between the HECT domain of NEDD4L and the E2 UbcH5B bearing a covalently linked Ub at its active site (UbcH5B approximately Ub). Noncovalent interactions between UbcH5B and the HECT N lobe and between Ub and the HECT domain C lobe lead to an overall compact structure, with the Ub C terminus sandwiched between UbcH5B and HECT domain active sites. The structure suggests a model for E2-to-HECT Ub transfer, in which interactions between a donor Ub and an acceptor domain constrain upstream and downstream enzymes for conjugation. 2009 Elsevier Inc.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                6 August 2012
                01 May 2011
                2 June 2011
                17 September 2012
                : 474
                : 7349
                : 105-108
                Affiliations
                Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington, 98195, U.S.A.
                Author notes
                Correspondence and requests for materials should be addressed to R.E.K. ( klevit@ 123456u.washington.edu )
                Article
                NIHMS275829
                10.1038/nature09966
                3444301
                21532592
                e715f49a-36c5-4e8f-be85-29922c8f7c7a

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: T32 GM007270 || GM
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article