69
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer metabolism, stemness and tumor recurrence : MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, we interrogated head and neck cancer (HNSCC) specimens (n = 12) to examine if different metabolic compartments (oxidative vs. glycolytic) co-exist in human tumors. A large panel of well-established biomarkers was employed to determine the metabolic state of proliferative cancer cells. Interestingly, cell proliferation in cancer cells, as marked by Ki-67 immunostaining, was strictly correlated with oxidative mitochondrial metabolism (OXPHOS) and the uptake of mitochondrial fuels, as detected via MCT1 expression (p < 0.001). More specifically, three metabolic tumor compartments were delineated: (1) proliferative and mitochondrial-rich cancer cells (Ki-67+/TOMM20+/COX+/MCT1+); (2) non-proliferative and mitochondrial-poor cancer cells (Ki-67−/TOMM20−/COX−/MCT1−); and (3) non-proliferative and mitochondrial-poor stromal cells (Ki-67−/TOMM20−/COX−/MCT1−). In addition, high oxidative stress (MCT4+) was very specific for cancer tissues. Thus, we next evaluated the prognostic value of MCT4 in a second independent patient cohort (n = 40). Most importantly, oxidative stress (MCT4+) in non-proliferating epithelial cancer cells predicted poor clinical outcome (tumor recurrence; p < 0.0001; log-rank test), and was functionally associated with FDG-PET avidity (p < 0.04). Similarly, oxidative stress (MCT4+) in tumor stromal cells was specifically associated with higher tumor stage (p < 0.03), and was a highly specific marker for cancer-associated fibroblasts (p < 0.001). We propose that oxidative stress is a key hallmark of tumor tissues that drives high-energy metabolism in adjacent proliferating mitochondrial-rich cancer cells, via the paracrine transfer of mitochondrial fuels (such as L-lactate and ketone bodies). New antioxidants and MCT4 inhibitors should be developed to metabolically target “three-compartment tumor metabolism” in head and neck cancers. It is remarkable that two “non-proliferating” populations of cells (Ki-67−/MCT4+) within the tumor can actually determine clinical outcome, likely by providing high-energy mitochondrial “fuels” for proliferative cancer cells to burn. Finally, we also show that in normal mucosal tissue, the basal epithelial “stem cell” layer is hyper-proliferative (Ki-67+), mitochondrial-rich (TOMM20+/COX+) and is metabolically programmed to use mitochondrial fuels (MCT1+), such as ketone bodies and L-lactate. Thus, oxidative mitochondrial metabolism (OXPHOS) is a common feature of both (1) normal stem cells and (2) proliferating cancer cells. As such, we should consider metabolically treating cancer patients with mitochondrial inhibitors (such as Metformin), and/or with a combination of MCT1 and MCT4 inhibitors, to target “metabolic symbiosis.”

          Related collections

          Most cited references74

          • Record: found
          • Abstract: not found
          • Article: not found

          The distribution of secondary growths in cancer of the breast. 1889.

          S. PAGET (1989)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism.

            The monocarboxylate transporter MCT4 mediates lactic acid efflux from most tissues that are dependent on glycolysis for their ATP production. Here we demonstrate that expression of MCT4 mRNA and protein was increased >3-fold by a 48-h exposure to 1% O(2), whereas MCT1 expression was not increased. The effect was mimicked by CoCl(2) (50 microm), suggesting transcriptional regulation by hypoxia-inducible factor 1alpha (HIF-1alpha). The predicted promoters for human MCT1, MCT2, and MCT4 were cloned into the pGL3 vector and shown to be active (luciferase luminescence) under basal conditions. Only the MCT4 promoter was activated (>2-fold) by hypoxia. No response was found in cells lacking HIF-1alpha. Four potential hypoxia-response elements were identified, but deletion analysis implicated only two in the hypoxia response. These were just upstream from the transcription start site and also found in the mouse MCT4 promoter. Mutation of site 2 totally abolished the hypoxic response, whereas mutation of site 1 only reduced the response. Gel-shift analysis demonstrated that nuclear extracts of hypoxic but not normoxic HeLa cells contained two transcription factors that bound to DNA probes containing these hypoxia-response elements. The major shifted band was abolished by mutation of site 2, and supershift analysis confirmed that HIF-1alpha bound to this site. Binding of the second factor was abolished by mutation of site 1. We conclude that MCT4, like other glycolytic enzymes, is up-regulated by hypoxia through a HIF-1alpha-mediated mechanism. This adaptive response allows the increased lactic acid produced during hypoxia to be rapidly lost from the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.

              Cancer-associated fibroblasts (CAF) engage in tumor progression by promoting the ability of cancer cells to undergo epithelial-mesenchymal transition (EMT), and also by enhancing stem cells traits and metastatic dissemination. Here we show that the reciprocal interplay between CAFs and prostate cancer cells goes beyond the engagement of EMT to include mutual metabolic reprogramming. Gene expression analysis of CAFs cultured ex vivo or human prostate fibroblasts obtained from benign prostate hyperplasia revealed that CAFs undergo Warburg metabolism and mitochondrial oxidative stress. This metabolic reprogramming toward a Warburg phenotype occurred as a result of contact with prostate cancer cells. Intercellular contact activated the stromal fibroblasts, triggering increased expression of glucose transporter GLUT1, lactate production, and extrusion of lactate by de novo expressed monocarboxylate transporter-4 (MCT4). Conversely, prostate cancer cells, upon contact with CAFs, were reprogrammed toward aerobic metabolism, with a decrease in GLUT1 expression and an increase in lactate upload via the lactate transporter MCT1. Metabolic reprogramming of both stromal and cancer cells was under strict control of the hypoxia-inducible factor 1 (HIF1), which drove redox- and SIRT3-dependent stabilization of HIF1 in normoxic conditions. Prostate cancer cells gradually became independent of glucose consumption, while developing a dependence on lactate upload to drive anabolic pathways and thereby cell growth. In agreement, pharmacologic inhibition of MCT1-mediated lactate upload dramatically affected prostate cancer cell survival and tumor outgrowth. Hence, cancer cells allocate Warburg metabolism to their corrupted CAFs, exploiting their byproducts to grow in a low glucose environment, symbiotically adapting with stromal cells to glucose availability. ©2012 AACR.
                Bookmark

                Author and article information

                Journal
                Cell Cycle
                Cell Cycle
                CC
                Cell Cycle
                Landes Bioscience
                1538-4101
                1551-4005
                01 May 2013
                10 April 2013
                10 April 2013
                : 12
                : 9
                : 1371-1384
                Affiliations
                [1 ]Department of Otolaryngology; Thomas Jefferson University; Philadelphia, PA USA
                [2 ]Department of Pathology; Thomas Jefferson University; Philadelphia, PA USA
                [3 ]Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
                [4 ]Department of Medicine; Thomas Jefferson University; Philadelphia, PA USA
                [5 ]Jefferson Medical College; Thomas Jefferson University; Philadelphia, PA USA
                [6 ]Department of Pharmacology and Experimental Therapeutics; Division of Biostatistics; Thomas Jefferson University; Philadelphia, PA USA
                [7 ]University of Manchester; Institute of Cancer Sciences; Breakthrough Breast Cancer Research Unit; Manchester, UK
                Author notes
                [†]

                These authors contributed equally to this work.

                [‡]

                Current affiliation: Breakthrough Breast Cancer Research Unit; Institute of Cancer Sciences; University of Manchester; Manchester, UK

                [* ]Correspondence to: Joseph M. Curry, Email: joseph.curry@ 123456jefferson.edu and Michael P. Lisanti, Email: michaelp.lisanti@ 123456gmail.com and Ubaldo E. Martinez-Outschoorn, Email: Ubaldo.Martinez-Outschoorn@ 123456jeffersonhospital.org
                Article
                2013CC4834 24092
                10.4161/cc.24092
                3674065
                23574725
                e71313ab-2b9b-4ed5-bb1e-280c94c51617
                Copyright © 2013 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 18 February 2013
                : 23 February 2013
                Categories
                Report

                Cell biology
                head and neck cancer,tumor recurrence,oxidative stress,stem cells,mitochondria,oxphos,glycolysis,monocarboxylate transporters (mct),mct1,mct4,metabolic symbiosis,tomm20,tumor stroma

                Comments

                Comment on this article