26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances on Phagocytic B Cells in Teleost Fish

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The momentous discovery of phagocytic activity in teleost B cells has caused a dramatic paradigm shift from the belief that phagocytosis is performed mainly by professional phagocytes derived from common myeloid progenitor cells, such as macrophages/monocytes, neutrophils, and dendritic cells. Recent advances on phagocytic B cells and their microbicidal ability in teleost fish position B cells at the crossroads, bridging innate with adaptive immunity. Most importantly, an increasing body of experimental evidence demonstrates that, in both teleosts and mammals, phagocytic B cells can recognize, take up, and destroy particulate antigens and then present those processed antigens to CD4 + T cells to elicit adaptive immune responses and that the phagocytosis is mediated by pattern recognition receptors and involves multiple cytokines. Thus, current findings collectively indicate that teleost phagocytic B cells, as well as their counterpart mammalian B1-B cells, can be considered one kind of professional phagocyte. The aim of this review is to summarize recent advances regarding teleost phagocytic B cells, with a particular focus on the recognizing receptors and modulating mechanisms of phagocytic B cells and the process of antigen presentation for T-cell activation. We also attempt to provide new insights into the adaptive evolution of the teleost fish phagocytic B cell on the basis of its innate and adaptive roles.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Phagocytosis: elegant complexity.

          Phagocytosis requires receptor-mediated recognition of particles, usually in the guise of infectious agents and apoptotic cells. Phagosomes fuse with lysosomes to generate phagolysosomes, which play a key role in enzymatic digestion of the internalized contents into component parts. Recent findings indicate that a simple paradigm of a single cognate receptor interaction that guides the phagosome to phagolysosome formation belies the complexity of combinatorial receptor recognition and diversity of phagosome function. In fact, phagosomes are comprised of hundreds of proteins that play a key role in deciphering the contents of the phagosome and in defining host response. In this review we discuss how the challenge of recognizing diverse molecular patterns is met by combinatorial interactions between phagocytic receptors. Furthermore, these combinations are dynamic and both sculpt the balance between a proinflammatory or anti-inflammatory response and direct phagosome diversity. We also indicate an important role for genetically tractable model organisms in defining key components of this evolutionarily conserved process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Function of Fish Cytokines

            What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toll-like receptors in bony fish: from genomics to function.

              Yniv Palti (2011)
              Receptors that recognize conserved pathogen molecules are the first line of cellular innate immunity defense. Toll-like receptors (TLRs) are the best understood of the innate immune receptors that detect infections in mammals. Key features of the fish TLRs and the factors involved in their signaling cascade have high structural similarity to the mammalian TLR system. However, the fish TLRs also exhibit very distinct features and large diversity which is likely derived from their diverse evolutionary history and the distinct environments that they occupy. Six non-mammalian TLRs were identified in fish. TLR14 shares sequence and structural similarity with TLR1 and 2, and the other five (TLR19, 20, 21, 22 and 23) form a cluster of novel TLRs. TLR4 was lost from the genomes of most fishes, and the TLR4 genes found in zebrafish do not recognize the mammalian agonist LPS and are likely paralogous and not orthologous to mammalian TLR4 genes. TLR6 and 10 are also absent from all fish genomes sequenced to date. Of the at least 16 TLR types identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S and TLR22. The common carp TLR2 was shown to recognize the synthetic triacylated lipopeptide Pam(3)CSK(4) and lipopeptides from gram positive bacteria. The membrane-bound TLR5 (TLR5M) signaling in response to flagellin in rainbow trout is amplified through interaction with the soluble form (TLR5S) in a positive loop feedback. In Fugu, TLR3 is localized to the endoplasmic reticulum (ER) and recognizes relatively short dsRNA, while TLR22 has a surveillance function like the human cell-surface TLR3. Genome and gene duplications have been major contributors to the teleost's rich evolutionary history and genomic diversity. Duplicate or multi-copy TLR genes were identified for TLR3 and 7 in common carp, TLR4b, 5, 8 and 20 in zebrafish, TLR8a in rainbow trout and TLR22 in rainbow trout and Atlantic salmon. The main task for current and near-future fish TLRs research is to develop specificity assays to identify the ligands of all fish TLRs, which will advance comparative immunology research and will contribute to our understanding of disease resistance mechanisms in fish and the development of new adjuvants and/or more effective vaccines and therapeutics. Published by Elsevier Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                27 May 2020
                2020
                : 11
                : 824
                Affiliations
                [1] 1Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University , Guangzhou, China
                [2] 2Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering , Guangzhou, China
                [3] 3State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University , Xiamen, China
                [4] 4Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology , Qingdao, China
                [5] 5School of Science and Medicine, Lake Superior State University , Sault Ste. Marie, MI, United States
                Author notes

                Edited by: Xinjiang Lu, Ningbo University, China

                Reviewed by: Yishan Lu, Guangdong Ocean University, China; Yong-An Zhang, Huazhong Agricultural University, China

                *Correspondence: Jianmin Ye jmye@ 123456m.scnu.edu.cn

                This article was submitted to Comparative Immunology, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2020.00824
                7267004
                32536909
                e7065e26-d57f-4912-accb-30fe4752a2ff
                Copyright © 2020 Wu, Qin, Liu, Lin, Ye and Li.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 February 2020
                : 14 April 2020
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 100, Pages: 9, Words: 8212
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Immunology
                Review

                Immunology
                teleost fish,b cells,phagocytosis,cytokines,antigen presentation
                Immunology
                teleost fish, b cells, phagocytosis, cytokines, antigen presentation

                Comments

                Comment on this article