59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytokine-Mediated Regulation of Plasma Cell Generation: IL-21 Takes Center Stage

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During our life, we are surrounded by continuous threats from a diverse range of invading pathogens. Our immune system has evolved multiple mechanisms to efficiently deal with these threats so as to prevent them from causing disease. Terminal differentiation of mature B cells into plasma cells (PC) – the antibody (Ab) secreting cells of the immune system – is critical for the generation of protective and long-lived humoral immune responses. Indeed, efficient production of antigen (Ag)-specific Ab by activated B cells underlies the success of most currently available vaccines. The mature B-cell pool is composed of several subsets, distinguished from one according to size, surface marker expression, location, and Ag exposure, and they all have the capacity to differentiate into PCs. For a B-cell to acquire the capacity to produce Abs, it must undergo an extensive differentiation process driven by changes in gene expression. Two broad categories of Ags exist that cause B-cell activation and differentiation: T cell dependent (TD) or T cell independent (TI). In addition to the B-cell subset and nature of the Ag, it is important to consider the cytokine environment that can also influence how B-cell differentiation is achieved. Thus, while many cytokines can induce Ab-secretion by B cells after activation with mimics of TD and TI stimuli in vitro, they can have different efficacies and specificities, and can often preferentially induce production of one particular Ig isotype over another. Here, we will provide an overview of in vitro studies (mouse and human origin) that evaluated the role of different cytokines in inducing the differentiation of distinct B-cell subsets to the PC lineage. We will place particular emphasis on IL-21, which has emerged as the most potent inducer of terminal B-cell differentiation in humans. We will also focus on the role of IL-21 and defects in B-cell function and how these contribute to human immunopathologies such as primary immunodeficiencies and B-cell mediated autoimmune conditions.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The origins, function, and regulation of T follicular helper cells

          The generation of high-affinity antibodies (Abs) plays a critical role in the neutralization and clearance of pathogens and subsequent host survival after natural infection with a variety of microorganisms. Most currently available vaccines rely on the induction of long-lived protective humoral immune responses by memory B cells and plasma cells, underscoring the importance of Abs in host protection. Ab responses against most antigens (Ags) require interactions between B cells and CD4+ T helper cells, and it is now well recognized that T follicular helper cells (Tfh) specialize in providing cognate help to B cells and are fundamentally required for the generation of T cell–dependent B cell responses. Perturbations in the development and/or function of Tfh cells can manifest as immunopathologies, such as immunodeficiency, autoimmunity, and malignancy. Unraveling the cellular and molecular requirements underlying Tfh cell formation and maintenance will help to identify molecules that could be targeted for the treatment of immunological diseases that are characterized by insufficient or excessive Ab responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BAFF AND APRIL: a tutorial on B cell survival.

            BAFF, a member of the TNF family, is a fundamental survival factor for transitional and mature B cells. BAFF overexpression leads to an expanded B cell compartment and autoimmunity in mice, and elevated amounts of BAFF can be found in the serum of autoimmune patients. APRIL is a related factor that shares receptors with BAFF yet appears to play a different biological role. The BAFF system provides not only potential insight into the development of autoreactive B cells but a relatively simple paradigm to begin considering the balancing act between survival, growth, and death that affects all cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Tlr7 translocation accelerates systemic autoimmunity in murine lupus.

              The y-linked autoimmune accelerating (yaa) locus is a potent autoimmune disease allele. Transcription profiling of yaa-bearing B cells revealed the overexpression of a cluster of X-linked genes that included Tlr7. FISH analysis demonstrated the translocation of this segment onto the yaa chromosome. The resulting overexpression of Tlr7 increased in vitro responses to Toll-like receptor (TLR) 7 signaling in all yaa-bearing males. B6.yaa mice are not overtly autoimmune, but the addition of Sle1, which contains the autoimmune-predisposing Slam/Cd2 haplotype, causes the development of fatal lupus with numerous immunological aberrations. B6.Sle1yaa CD4 T cells develop the molecular signature for T(FH) cells and also show expression changes in numerous cytokines and chemokines. Disease development and all component autoimmune phenotypes were inhibited by Sles1, a potent suppressor locus. Sles1 had no effect on yaa-enhanced TLR7 signaling in vitro, and these data place Sles1 downstream from the lesion in innate immune responses mediated by TLR7, suggesting that Sles1 modulates the activation of adaptive immunity in response to innate immune signaling.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/23655
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                18 February 2014
                2014
                : 5
                : 65
                Affiliations
                [1] 1Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research , Darlinghurst, NSW, Australia
                [2] 2St Vincent’s Clinical School, University of New South Wales , Darlinghurst, NSW, Australia
                Author notes

                Edited by: Catherine Pellat-Deceunynck, Centre National de la Recherche Scientifique, France

                Reviewed by: Klaus Warnatz, University of Freiburg, Germany; Karin Tarte, Université Rennes 1, France

                *Correspondence: Stuart G. Tangye, Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia e-mail: s.tangye@ 123456garvan.org.au

                This article was submitted to B Cell Biology, a section of the journal Frontiers in Immunology.

                Article
                10.3389/fimmu.2014.00065
                3927127
                24600453
                e6eadc81-c919-420e-9f9a-cf51cda62582
                Copyright © 2014 Moens and Tangye.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 December 2013
                : 05 February 2014
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 145, Pages: 13, Words: 12541
                Categories
                Immunology
                Review Article

                Immunology
                human b cells,differentiation,plasma cells,cytokines,il-21,immunodeficiency,autoimmune diseases
                Immunology
                human b cells, differentiation, plasma cells, cytokines, il-21, immunodeficiency, autoimmune diseases

                Comments

                Comment on this article