Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Irinotecan and 5-fluorouracil (5-FU) are used to treat metastatic colorectal cancer. Irinotecan's active metabolite is inactivated by UDP-glucuronosyltransferase 1A1 ( UGT1A1), which is deficient in Gilbert's syndrome. Irinotecan and metabolites are transported by P-glycoprotein, encoded by ABCB1. 5-FU targets folate metabolism through inhibition of thymidylate synthase ( TYMS). Methylenetetrahydrofolate reductase ( MTHFR) generates active folate necessary for haematopoiesis. We retrospectively genotyped 140 Swedish and Norwegian irinotecan and 5-FU-treated colorectal cancer patients from the Nordic VI clinical trial for selected variants of UGT1A1, ABCB1, TYMS and MTHFR. We found an increased risk of clinically relevant early toxicity in patients carrying the ABCB1 3435 T/T genotype, Odds ratio (OR)=3.79 (95% confidence interval (CI)=1.09–13.2), and in patients carrying the UGT1A1 *28/ *28 genotype, OR=4.43 (95% CI=1.30–15.2). Patients with UGT1A1 *28/ *28 had an especially high risk of neutropenia, OR=6.87 (95% CI=1.70–27.7). Patients who had reacted with toxicity during the first two cycles were in total treated with fewer cycles ( P<0.001), and less often responded to treatment ( P<0.001). Genetic variation in ABCB1 was associated with both early toxicity and lower response to treatment. Carriers of the ABCB1 1236T-2677T-3435T haplotype responded to treatment less frequently (43 vs 67%, P=0.027), and survived shorter time, OR=1.56 (95% CI=1.01–2.45).

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan.

          Severe toxicity is commonly observed in cancer patients receiving irinotecan. UDP-glucuronosyltransferase 1A1 (UGT1A1) catalyzes the glucuronidation of the active metabolite SN-38. This study prospectively evaluated the association between the prevalence of severe toxicity and UGT1A1 genetic variation. Sixty-six cancer patients with advanced disease refractory to other treatments received irinotecan 350 mg/m(2) every 3 weeks. Toxicity and pharmacokinetic data were measured during cycle 1. UGT1A1 variants (-3279G>T, -3156G>A, promoter TA indel, 211G>A, 686C>A) were genotyped. The prevalence of grade 4 neutropenia was 9.5%. Grade 4 neutropenia was much more common in patients with the TA indel 7/7 genotype (3 of 6 patients; 50%) compared with 6/7 (3 of 24 patients; 12.5%) and 6/6 (0 of 29 patients; 0%) (P =.001). The TA indel genotype was significantly associated with the absolute neutrophil count nadir (7/7 A variant seemed to distinguish different phenotypes of total bilirubin within the TA indel genotypes. The -3156 genotype and the SN-38 area under the concentration versus time curve were significant predictors of ln(absolute neutrophil count nadir; r(2) = 0.51). UGT1A1 genotype and total bilirubin levels are strongly associated with severe neutropenia, and could be used to identify cancer patients predisposed to the severe toxicity of irinotecan. The hypothesis that the -3156G>A variant is a better predictor of UGT1A1 status than the previously reported TA indel requires further testing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters.

            The Food and Drug Administration and Pfizer changed the package insert for irinotecan to include a patient's UGT1A1*28 genotype as a risk factor for severe neutropenia on the basis of the findings of four pharmacogenetic studies, which found that irinotecan-treated patients who were homozygous for the UGT1A1*28 allele had a greater risk of hematologic toxic effects than patients who had one or two copies of the wild-type allele (UGT1A1*1). Findings of subsequent irinotecan pharmacogenetic studies have been inconsistent. In a meta-analysis, we reviewed data presented in nine studies that included a total of 10 sets of patients (for a total of 821 patients) and assessed the association of irinotecan dose with the risk of irinotecan-related hematologic toxicities (grade III-IV) for patients with a UGT1A1*28/*28 genotype. The risk of toxicity was higher among patients with a UGT1A1*28/*28 genotype than among those with a UGT1A1*1/*1 or UGT1A1*1/*28 genotype at both medium (odds ratio [OR] = 3.22, 95% confidence interval [CI] = 1.52 to 6.81; P = .008) and high (OR = 27.8, 95% CI = 4.0 to 195; P = .005) doses of irinotecan. However, risk was similar at lower doses (OR = 1.80, 95% CI = 0.37 to 8.84; P = .41). Low doses of irinotecan (100-125 mg/m2) are in the commonly used therapeutic range. The risk of experiencing irinotecan-induced hematologic toxicity for patients with a UGT1A1*28/*28 genotype thus appears to be a function of the dose of irinotecan administered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis.

              Irinotecan unexpectedly causes severe toxicity of leukopenia or diarrhea. Irinotecan is metabolized to form active SN-38, which is further conjugated and detoxified by UDP-glucuronosyltransferase (UGT) 1A1 enzyme. Genetic polymorphisms of the UGT1A1 would affect an interindividual variation of the toxicity by irinotecan via the alternation of bioavailability of SN-38. In this case-control study, retrospective review of clinical records and determination of UGT1A1 polymorphisms were performed to investigate whether a patient with the variant UGT1A1 genotypes would be at higher risk for severe toxicity by irinotecan. All patients previously received irinotecan against cancer in university hospitals, cancer centers, or large urban hospitals in Japan. We identified 26 patients who experienced severe toxicity and 92 patients who did not. The relationship was studied between the multiple variant genotypes (UGT1A1*28 in the promoter and UGT1A1*6, UGT1A1*27, UGT1A1*29, and UGT1A1*7 in the coding region) and the severe toxicity of grade 4 leukopenia (< or =0.9 x 10(9)/liter) and/or grade 3 (watery for 5 days or more) or grade 4 (hemorrhagic or dehydration) diarrhea. Of the 26 patients with the severe toxicity, the genotypes of UGT1A1*28 were homozygous in 4 (15%) and heterozygous in 8 (31%), whereas 3 (3%) homozygous and 10 (11%) heterozygous were found among the 92 patients without the severe toxicity. Multivariate analysis suggested that the genotype either heterozygous or homozygous for UGT1A1*28 would be a significant risk factor for severe toxicity by irinotecan (P < 0.001; odds ratio, 7.23; 95% confidence interval, 2.52-22.3). All 3 patients heterozygous for UGT1A1*27 encountered severe toxicity. No statistical association of UGT1A1*6 with the occurrence of severe toxicity was observed. None had UGT1A1*29 or UGT1A1*7. We suggest that determination of the UGT1A1 genotypes might be clinically useful for predicting severe toxicity by irinotecan in cancer patients. This research warrants a prospective trial to corroborate the usefulness of gene diagnosis of UGT1A1 polymorphisms prior tb irinotecan chemotherapy.
                Bookmark

                Author and article information

                Journal
                Pharmacogenomics J
                The Pharmacogenomics Journal
                Nature Publishing Group
                1470-269X
                1473-1150
                February 2011
                23 February 2010
                : 11
                : 1
                : 61-71
                Affiliations
                [1 ]simpleDepartment of Oncology, Radiology and Clinical Immunology, Uppsala University , Uppsala, Sweden
                [2 ]simpleDepartment of Oncology and Pathology, Karolinska Institutet , Stockholm, Sweden
                [3 ]simpleRegional Oncologic Centre, Uppsala University Hospital , Uppsala, Sweden
                [4 ]simpleDivision of Cancer Studies, School of Medicine, King's College London , London, UK
                [5 ]simpleDepartment of Medical Sciences, Clinical Pharmacology, Uppsala University , Uppsala, Sweden
                [6 ]simpleDepartment of Oncology, Haukeland University Hospital , Bergen, Norway
                Author notes
                [* ]simpleDepartment of Medical Sciences, Clinical Pharmacology , Uppsala University Hospital entrance 61 3rd floor, Uppsala SE-751 85, Sweden. E-mail: mia.wadelius@ 123456medsci.uu.se
                Article
                tpj201010
                10.1038/tpj.2010.10
                3036798
                20177420
                e6e96d25-820e-4518-9502-7fc9cf87ac55
                Copyright © 2011 Nature Publishing Group

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 21 August 2009
                : 14 December 2009
                : 22 January 2010
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                fluorouracil,methylenetetrahydrofolate reductase (nadph2),glucuronosyltransferase,thymidylate synthase,camptothecin/analogs and derivatives,p-glycoprotein

                Comments

                Comment on this article