9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DDM1 and Lsh remodelers allow methylation of DNA wrapped in nucleosomes

      research-article
      1 , 1 , 2 ,
      eLife
      eLife Sciences Publications, Ltd
      DNA methylation, nucleosome, DDM1, A. thaliana, Mouse

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cytosine methylation regulates essential genome functions across eukaryotes, but the fundamental question of whether nucleosomal or naked DNA is the preferred substrate of plant and animal methyltransferases remains unresolved. Here, we show that genetic inactivation of a single DDM1/Lsh family nucleosome remodeler biases methylation toward inter-nucleosomal linker DNA in Arabidopsis thaliana and mouse. We find that DDM1 enables methylation of DNA bound to the nucleosome, suggesting that nucleosome-free DNA is the preferred substrate of eukaryotic methyltransferases in vivo. Furthermore, we show that simultaneous mutation of DDM1 and linker histone H1 in Arabidopsis reproduces the strong linker-specific methylation patterns of species that diverged from flowering plants and animals over a billion years ago. Our results indicate that in the absence of remodeling, nucleosomes are strong barriers to DNA methyltransferases. Linker-specific methylation can evolve simply by breaking the connection between nucleosome remodeling and DNA methylation.

          eLife digest

          Living cells add chemical tags to their DNA to regulate which genes are switched on or off at any given time. These tags include methyl groups added to one of the letters of the DNA code called cytosine. Both plants and mammals need cytosine methylation to develop properly. This methylation also keeps sections of foreign DNA that may have invaded the cell in check.

          DNA inside the cell is tightly packed, wrapped around proteins to form spool-like structures called nucleosomes. Between each nucleosome is a short DNA segment called a linker region. The DNA wound into nucleosomes is generally inaccessible to other proteins, such as those that add methyl groups. Yet, in flowering plants and mammals, cytosine methylation occurs in both nucleosomes and in linker regions. It was not clear how DNA could be modified in the restrained setting of nucleosomes.

          Enzymes called nucleosome remodelers can loosen nucleosomes to allow other proteins to reach the DNA. Lyons and Zilberman asked whether cytosine methylation occurs on the nucleosome-bound DNA or if it requires enzymes like these to free the DNA from the constraints of the nucleosome. The experiments involved a plant called Arabidopsis thaliana and mouse cells grown in the laboratory. In mutant plants lacking a nucleosome remodeler called DDM1, cytosine methylation occurred in the linker regions but not in the nucleosomes. Mouse cells lacking the mouse version of DDM1 also showed less cytosine methylation in the nucleosomes.

          These results suggest that nucleosomes are barriers to the enzymes that modify DNA. Nucleosome remodeling enzymes like DDM1 can overcome these obstacles to enable cytosine methylation of nucleosome-wrapped DNA.

          These findings imply that cytosine methylation is more easily established and maintained on nucleosome-free DNA. Abnormal patterns of DNA methylation have been linked to medical conditions – such as neurological disorders and cancers – and to plant defects that hamper agriculture. A better understanding of the process may in the future lead to ways to correct problems with cytosine methylation in these different contexts.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating the timing of early eukaryotic diversification with multigene molecular clocks.

          Although macroscopic plants, animals, and fungi are the most familiar eukaryotes, the bulk of eukaryotic diversity is microbial. Elucidating the timing of diversification among the more than 70 lineages is key to understanding the evolution of eukaryotes. Here, we use taxon-rich multigene data combined with diverse fossils and a relaxed molecular clock framework to estimate the timing of the last common ancestor of extant eukaryotes and the divergence of major clades. Overall, these analyses suggest that the last common ancestor lived between 1866 and 1679 Ma, consistent with the earliest microfossils interpreted with confidence as eukaryotic. During this interval, the Earth's surface differed markedly from today; for example, the oceans were incompletely ventilated, with ferruginous and, after about 1800 Ma, sulfidic water masses commonly lying beneath moderately oxygenated surface waters. Our time estimates also indicate that the major clades of eukaryotes diverged before 1000 Ma, with most or all probably diverging before 1200 Ma. Fossils, however, suggest that diversity within major extant clades expanded later, beginning about 800 Ma, when the oceans began their transition to a more modern chemical state. In combination, paleontological and molecular approaches indicate that long stems preceded diversification in the major eukaryotic lineages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation.

            DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas.

              Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                15 November 2017
                2017
                : 6
                : e30674
                Affiliations
                [1 ]deptDepartment of Plant and Microbial Biology University of California, Berkeley BerkeleyUnited States
                [2 ]deptDepartment of Cell and Developmental Biology John Innes Centre NorwichUnited Kingdom
                University of Wisconsin United States
                University of Wisconsin United States
                Author information
                http://orcid.org/0000-0002-5721-4080
                http://orcid.org/0000-0002-0123-8649
                Article
                30674
                10.7554/eLife.30674
                5728721
                29140247
                e6e4a55c-9184-4d20-b3a0-87bb692051ed
                © 2017, Lyons et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 24 July 2017
                : 14 November 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000011, Howard Hughes Medical Institute;
                Award ID: 55108592
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100010661, Horizon 2020 Framework Programme;
                Award ID: 725746
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: T32HG000047
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100005237, Helen Hay Whitney Foundation;
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Genes and Chromosomes
                Plant Biology
                Custom metadata
                Nucleosomes and linker histones block eukaryotic cytosine methylation.

                Life sciences
                dna methylation,nucleosome,ddm1,a. thaliana,mouse
                Life sciences
                dna methylation, nucleosome, ddm1, a. thaliana, mouse

                Comments

                Comment on this article