Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Probabilistic atlases of neuroanatomy are more representative of population anatomy than single brain atlases. They allow anatomical labeling of the results of group studies in stereotaxic space, automated anatomical labeling of individual brain imaging datasets, and the statistical assessment of normal ranges for structure volumes and extents. No such manually constructed atlas is currently available for the frequently studied group of young adults. We studied 20 normal subjects (10 women, median age 31 years) with high-resolution magnetic resonance imaging (MRI) scanning. Images were nonuniformity corrected and reoriented along both the anterior-posterior commissure (AC-PC) line horizontally and the midsagittal plane sagittally. Building on our previous work, we have expanded and refined existing algorithms for the subdivision of MRI datasets into anatomical structures. The resulting algorithm is presented in the Appendix. Forty-nine structures were interactively defined as three-dimensional volumes-of-interest (VOIs). The resulting 20 individual atlases were spatially transformed (normalized) into standard stereotaxic space, using SPM99 software and the MNI/ICBM 152 template. We evaluated volume data for all structures both in native space and after spatial normalization, and used the normalized superimposed atlases to create a maximum probability map in stereotaxic space, which retains quantitative information regarding inter-subject variability. Its potential applications range from the automatic labeling of new scans to the detection of anatomical abnormalities in patients. Further data can be extracted from the atlas for the detailed analysis of individual structures.

          Related collections

          Author and article information

          Journal
          Hum Brain Mapp
          Human brain mapping
          Wiley
          1065-9471
          1065-9471
          Aug 2003
          : 19
          : 4
          Affiliations
          [1 ] MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, United Kingdom.
          Article
          10.1002/hbm.10123
          6871794
          12874777
          e69ad922-e569-46c8-b070-552813c15ae3
          Copyright 2003 Wiley-Liss,Inc.
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content62

          Cited by428