10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Greater Central Arterial Stiffness on Cardiovagal Baroreflex Sensitivity in Resistance-Trained Men

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Compared with age-matched untrained men, resistance-trained men who have undergone long duration training (> 2 years) at a high frequency (> 5 days/week) may be lower cardiovagal baroreflex sensitivity (BRS) because of central arterial stiffening. Therefore, the purpose of this study was to examine the effect of greater central arterial stiffness in resistance-trained men on cardiovagal BRS in a cross-sectional study to compare resistance-trained men with age-matched untrained men.

          Methods

          This cross-sectional study included resistance-trained men ( n = 20; age: 22 ± 3; body mass index: 26.7 ± 2.2) and age-matched untrained men (control group: n = 20; age: 25 ± 2; body mass index: 23.7 ± 2.4). The β-stiffness index and arterial compliance were assessed at the right carotid artery using a combination of a brightness mode ultrasonography system for the carotid artery diameter and applanation tonometry for the carotid blood pressure. And, the cardiovagal BRS was estimated by the slope of the R–R interval and systolic blood pressure during Phase II and IV of Valsalva maneuver (VM). The participants maintained an expiratory mouth pressure of 40 mmHg for 15 s in the supine position.

          Results

          The β-Stiffness index was significantly higher in the resistance-trained group than in the control group (5.9 ± 1.4 vs. 4.4 ± 1.0 a.u., P < 0.01). In contrast, the resistance-trained group had significantly lower arterial compliance (0.15 ± 0.05 vs. 0.20 ± 0.04 mm 2/mmHg, P < 0.01) and cardiovagal BRS during Phase IV of VM (9.0 ± 2.5 vs. 12.9 ± 5.4 ms/mmHg, P < 0.01) than the control group and. Moreover, cardiovagal BRS during Phase IV of VM was inversely and positively correlated with the β-stiffness index ( r = − 0.59, P < 0.01) and arterial compliance ( r = 0.64, P < 0.01), respectively.

          Conclusion

          Resistance-trained group had greater central arterial stiffness and lower cardiovagal BRS Phase IV compared with control group. Moreover, the central arterial stiffening was related to cardiovagal BRS Phase IV. These results suggest that greater central arterial stiffness in resistance-trained men may be associated with lower cardiovagal BRS.

          Trial Registration University hospital Medical Information Network (UMIN) in Japan, UMIN000038116. Registered on September 27, 2019.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          American College of Sports Medicine position stand. Progression models in resistance training for healthy adults.

          (2009)
          In order to stimulate further adaptation toward specific training goals, progressive resistance training (RT) protocols are necessary. The optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single- and multiple-joint exercises. In addition, it is recommended that strength programs sequence exercises to optimize the preservation of exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher-intensity before lower-intensity exercises). For novice (untrained individuals with no RT experience or who have not trained for several years) training, it is recommended that loads correspond to a repetition range of an 8-12 repetition maximum (RM). For intermediate (individuals with approximately 6 months of consistent RT experience) to advanced (individuals with years of RT experience) training, it is recommended that individuals use a wider loading range from 1 to 12 RM in a periodized fashion with eventual emphasis on heavy loading (1-6 RM) using 3- to 5-min rest periods between sets performed at a moderate contraction velocity (1-2 s CON; 1-2 s ECC). When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number. The recommendation for training frequency is 2-3 d x wk(-1) for novice training, 3-4 d x wk(-1) for intermediate training, and 4-5 d x wk(-1) for advanced training. Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency. For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity. Higher volume, multiple-set programs are recommended for maximizing hypertrophy. Progression in power training entails two general loading strategies: 1) strength training and 2) use of light loads (0-60% of 1 RM for lower body exercises; 30-60% of 1 RM for upper body exercises) performed at a fast contraction velocity with 3-5 min of rest between sets for multiple sets per exercise (three to five sets). It is also recommended that emphasis be placed on multiple-joint exercises especially those involving the total body. For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (>15) using short rest periods (<90 s). In the interpretation of this position stand as with prior ones, recommendations should be applied in context and should be contingent upon an individual's target goals, physical capacity, and training status.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism.

            Prescribed and supervised resistance training (RT) enhances muscular strength and endurance, functional capacity and independence, and quality of life while reducing disability in persons with and without cardiovascular disease. These benefits have made RT an accepted component of programs for health and fitness. The American Heart Association recommendations describing the rationale for participation in and considerations for prescribing RT were published in 2000. This update provides current information regarding the (1) health benefits of RT, (2) impact of RT on the cardiovascular system structure and function, (3) role of RT in modifying cardiovascular disease risk factors, (4) benefits in selected populations, (5) process of medical evaluation for participation in RT, and (6) prescriptive methods. The purpose of this update is to provide clinicians with recommendations to facilitate the use of this valuable modality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise modalities and endothelial function: a systematic review and dose-response meta-analysis of randomized controlled trials.

              Regular exercise is associated with enhanced nitric oxide (NO) bioavailability. Flow-mediated dilation (FMD) is used widely to assess endothelial function (EF) and NO release.
                Bookmark

                Author and article information

                Contributors
                nnakamura@aoni.waseda.jp
                Journal
                Sports Med Open
                Sports Med Open
                Sports Medicine - Open
                Springer International Publishing (Cham )
                2199-1170
                2198-9761
                26 October 2021
                26 October 2021
                December 2021
                : 7
                : 77
                Affiliations
                [1 ]GRID grid.5290.e, ISNI 0000 0004 1936 9975, Faculty of Sport Sciences, , Waseda University, ; Tokorozawa, Saitama Japan
                [2 ]GRID grid.443247.2, ISNI 0000 0001 0632 7045, Faculty of Commerce, , Yokohama College of Commerce, ; Yokohama, Kanagawa Japan
                [3 ]GRID grid.5290.e, ISNI 0000 0004 1936 9975, Waseda Institute for Sport Sciences, Waseda University, ; Tokorozawa, Saitama Japan
                Author information
                http://orcid.org/0000-0003-3118-6090
                Article
                367
                10.1186/s40798-021-00367-x
                8548489
                34698951
                e696678a-ca74-4978-b0a1-25a8e4f44a58
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 March 2021
                : 4 October 2021
                Funding
                Funded by: KAKENHI (Grant-in-Aid for Research Activity start-up)
                Award ID: 19K24325
                Award Recipient :
                Categories
                Original Research Article
                Custom metadata
                © The Author(s) 2021

                cardiovagal baroreflex sensitivity,central arterial stiffness,central arterial compliance,resistance training

                Comments

                Comment on this article