23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endoplasmic reticulum stress‐induced exosomal miR‐27a‐3p promotes immune escape in breast cancer via regulating PD‐L1 expression in macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immune escape of breast cancer cells contributes to breast cancer pathogenesis. Tumour microenvironment stresses that disrupt protein homeostasis can produce endoplasmic reticulum (ER) stress. The miRNA‐mediated translational repression of mRNAs has been extensively studied in regulating immune escape and ER stress in human cancers. In this study, we identified a novel microRNA (miR)‐27a‐3p and investigated its mechanistic role in promoting immune evasion. The binding affinity between miR‐27a‐3p and MAGI2 was predicted using bioinformatic analysis and verified by dual‐luciferase reporter assay. Ectopic expression and inhibition of miR‐27a‐3p in breast cancer cells were achieved by transduction with mimics and inhibitors. Besides, artificial modulation of MAGI2 and PTEN was done to explore their function in ER stress and immune escape of cancer cells. Of note, exosomes were derived from cancer cells and co‐cultured with macrophages for mechanistic studies. The experimental data suggested that ER stress biomarkers including GRP78, PERK, ATF6, IRE1α and PD‐L1 were overexpressed in breast cancer tissues relative to paracancerous tissues. Endoplasmic reticulum stress promoted exosome secretion and elevated exosomal miR‐27a‐3p expression. Elevation of miR‐27a‐3p and PD‐L1 levels in macrophages was observed in response to exosomes‐overexpressing miR‐27a‐3p in vivo and in vitro. miR‐27a‐3p could target and negatively regulate MAGI2, while MAGI2 down‐regulated PD‐L1 by up‐regulating PTEN to inactivate PI3K/AKT signalling pathway. Less CD4 +, CD8 + T cells and IL‐2, and T cells apoptosis were observed in response to co‐culture of macrophages and CD3 + T cells. Conjointly, exosomal miR‐27a‐3p promotes immune evasion by up‐regulating PD‐L1 via MAGI2/PTEN/PI3K axis in breast cancer.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial

          Summary Background Local cancer relapse risk after breast conservation surgery followed by radiotherapy has fallen sharply in many countries, and is influenced by patient age and clinicopathological factors. We hypothesise that partial-breast radiotherapy restricted to the vicinity of the original tumour in women at lower than average risk of local relapse will improve the balance of beneficial versus adverse effects compared with whole-breast radiotherapy. Methods IMPORT LOW is a multicentre, randomised, controlled, phase 3, non-inferiority trial done in 30 radiotherapy centres in the UK. Women aged 50 years or older who had undergone breast-conserving surgery for unifocal invasive ductal adenocarcinoma of grade 1–3, with a tumour size of 3 cm or less (pT1–2), none to three positive axillary nodes (pN0–1), and minimum microscopic margins of non-cancerous tissue of 2 mm or more, were recruited. Patients were randomly assigned (1:1:1) to receive 40 Gy whole-breast radiotherapy (control), 36 Gy whole-breast radiotherapy and 40 Gy to the partial breast (reduced-dose group), or 40 Gy to the partial breast only (partial-breast group) in 15 daily treatment fractions. Computer-generated random permuted blocks (mixed sizes of six and nine) were used to assign patients to groups, stratifying patients by radiotherapy treatment centre. Patients and clinicians were not masked to treatment allocation. Field-in-field intensity-modulated radiotherapy was delivered using standard tangential beams that were simply reduced in length for the partial-breast group. The primary endpoint was ipsilateral local relapse (80% power to exclude a 2·5% increase [non-inferiority margin] at 5 years for each experimental group; non-inferiority was shown if the upper limit of the two-sided 95% CI for the local relapse hazard ratio [HR] was less than 2·03), analysed by intention to treat. Safety analyses were done in all patients for whom data was available (ie, a modified intention-to-treat population). This study is registered in the ISRCTN registry, number ISRCTN12852634. Findings Between May 3, 2007, and Oct 5, 2010, 2018 women were recruited. Two women withdrew consent for use of their data in the analysis. 674 patients were analysed in the whole-breast radiotherapy (control) group, 673 in the reduced-dose group, and 669 in the partial-breast group. Median follow-up was 72·2 months (IQR 61·7–83·2), and 5-year estimates of local relapse cumulative incidence were 1·1% (95% CI 0·5–2·3) of patients in the control group, 0·2% (0·02–1·2) in the reduced-dose group, and 0·5% (0·2–1·4) in the partial-breast group. Estimated 5-year absolute differences in local relapse compared with the control group were −0·73% (−0·99 to 0·22) for the reduced-dose and −0·38% (−0·84 to 0·90) for the partial-breast groups. Non-inferiority can be claimed for both reduced-dose and partial-breast radiotherapy, and was confirmed by the test against the critical HR being more than 2·03 (p=0·003 for the reduced-dose group and p=0·016 for the partial-breast group, compared with the whole-breast radiotherapy group). Photographic, patient, and clinical assessments recorded similar adverse effects after reduced-dose or partial-breast radiotherapy, including two patient domains achieving statistically significantly lower adverse effects (change in breast appearance [p=0·007 for partial-breast] and breast harder or firmer [p=0·002 for reduced-dose and p<0·0001 for partial-breast]) compared with whole-breast radiotherapy. Interpretation We showed non-inferiority of partial-breast and reduced-dose radiotherapy compared with the standard whole-breast radiotherapy in terms of local relapse in a cohort of patients with early breast cancer, and equivalent or fewer late normal-tissue adverse effects were seen. This simple radiotherapy technique is implementable in radiotherapy centres worldwide. Funding Cancer Research UK.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity

            ‘Crown-like’ structures composed of apoptotic adipocytes surrounded by adipose tissue macrophages (ATMs) are a characteristic of obesity. Liu and colleagues show that engulfment of apoptotic adipocytes triggers an ER stress response in ATMs and drives the proinflammatory response that underlies obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control.

              The PI3K-Akt pathway is a major survival pathway activated in cancer. Efforts to develop targeted therapies have not been fully successful, mainly because of extensive internal intrapathway or external interpathway negative feedback loops or because of networking between pathway suppressors. The PTEN tumor suppressor is the major brake of the pathway and a common target for inactivation in somatic cancers. This review will highlight the networking of PTEN with other inhibitors of the pathway, relevant to cancer progression. PTEN constitutes the main node of the inhibitory network, and a series of convergences at different levels in the PI3K-Akt pathway, starting from those with growth factor receptors, will be described. As PTEN exerts enzymatic activity as a phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) phosphatase, thus opposing the activity of PI3K, the concerted actions to increase the availability of PIP(3) in cancer cells, relying either on other phosphoinositide enzymes or on the intrinsic regulation of PTEN activity by other molecules, will be discussed. In particular, the synergy between PTEN and the circle of its direct interacting proteins will be brought forth in an attempt to understand both the activation of the PI3K-Akt pathway and the connections with other parallel oncogenic pathways. The understanding of the interplay between the modulators of the PI3K-Akt pathway in cancer should eventually lead to the design of therapeutic approaches with increased efficacy in the clinic.
                Bookmark

                Author and article information

                Contributors
                zxh975@sina.com
                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                16 July 2020
                September 2020
                : 24
                : 17 ( doiID: 10.1111/jcmm.v24.17 )
                : 9560-9573
                Affiliations
                [ 1 ] Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan China
                [ 2 ] Department of Thoracic Surgery Renmin Hospital of Wuhan University Wuhan China
                Author notes
                [*] [* ] Correspondence

                Xinghua Zhang, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan 430060, Hubei Province, China.

                Email: zxh975@ 123456sina.com

                Author information
                https://orcid.org/0000-0002-2002-1082
                Article
                JCMM15367
                10.1111/jcmm.15367
                7520328
                32672418
                e68de07e-397f-4a0d-abea-2f788fad5c99
                © 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 October 2019
                : 03 February 2020
                : 22 April 2020
                Page count
                Figures: 8, Tables: 1, Pages: 14, Words: 7782
                Funding
                Funded by: the Innovative Seed Foundation Cultivation Project of Medical Department in Wuhan University
                Award ID: TFZZ2018032
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                September 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.9.1 mode:remove_FC converted:27.09.2020

                Molecular medicine
                breast cancer,endoplasmic reticulum,exosomes,macrophages,microrna‐27a‐3p,programmed cell death‐ligand 1,tumour immune evasion of breast cancer cells

                Comments

                Comment on this article