3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic variant of COL11A2 gene is functionally associated with developmental dysplasia of the hip in Chinese Han population

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives: Developmental dysplasia of the hip (DDH) is a common skeletal disorder. This study was conducted to demonstrate the association between DDH and a polymorphism rs9277935 of COL11A2 gene.

          Results: A significant difference in genotype distribution in a recessive model (TT+GT vs. GG) between two groups (P=0.017) was demonstrated. Analysis in female patients showed significantly greater frequency of minor allele G(0.49 vs. 0.43, p=0.024) and significantly higher distribution of GG genotype (p=0.006). DDH patients were found to have significantly lower COL11A2 expression than controls. Moreover, DDH patients with rs9277935 genotype TT have a significantly increased expression of COL11A2 than those with genotype GG. COL11A2 demonstrated chondrogenic properties in vitro.

          Conclusion: Polymorphism rs9277935 of gene COL11A2 is a functional variant regulating the expression and the chondrogenic properties of COL11A2 in DDH in Chinese Han population.

          Methods: A case-control candidate gene association study was conducted in 945 patients (350 radiologically confirmed DDH patients and 595 healthy controls). Difference of COL11A2 expression in hip joint tissue was compared between the patients and the controls. Allelic difference in Col11a2 expression by rs9277935 was assessed with luciferase activity. Chondrogenic effects of Col11a2 signaling on BMSCs were also determined in vitro.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mesenchymal Stromal/stem Cell-derived Extracellular Vesicles Promote Human Cartilage Regeneration In Vitro

          Osteoarthritis (OA) is a rheumatic disease leading to chronic pain and disability with no effective treatment available. Recently, allogeneic human mesenchymal stromal/stem cells (MSC) entered clinical trials as a novel therapy for OA. Increasing evidence suggests that therapeutic efficacy of MSC depends on paracrine signalling. Here we investigated the role of extracellular vesicles (EVs) secreted by human bone marrow derived MSC (BMMSC) in human OA cartilage repair. Methods: To test the effect of BMMSC-EVs on OA cartilage inflammation, TNF-alpha-stimulated OA chondrocyte monolayer cultures were treated with BMMSC-EVs and pro-inflammatory gene expression was measured by qRT-PCR after 48 h. To assess the impact of BMMSC-EVs on cartilage regeneration, BMMSC-EVs were added to the regeneration cultures of human OA chondrocytes, which were analyzed after 4 weeks for glycosaminoglycan content by 1,9-dimethylmethylene blue (DMMB) assay. Furthermore, paraffin sections of the regenerated tissue were stained for proteoglycans (safranin-O) and type II collagen (immunostaining). Results: We show that BMMSC-EVs inhibit the adverse effects of inflammatory mediators on cartilage homeostasis. When co-cultured with OA chondrocytes, BMMSC-EVs abrogated the TNF-alpha-mediated upregulation of COX2 and pro-inflammatory interleukins and inhibited TNF-alpha-induced collagenase activity. BMMSC-EVs also promoted cartilage regeneration in vitro. Addition of BMMSC-EVs to cultures of chondrocytes isolated from OA patients stimulated production of proteoglycans and type II collagen by these cells. Conclusion: Our data demonstrate that BMMSC-EVs can be important mediators of cartilage repair and hold great promise as a novel therapeutic for cartilage regeneration and osteoarthritis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3

            Histone deacetylase 3 (HDAC3) plays a pivotal role in the repression of cartilage-specific gene expression in human chondrocytes. The aim of this study was to determine whether microRNA-193b-3p (miR-193b-3p) regulates the expression of HDAC3 during chondrogenesis and chondrocyte metabolism. Methods: miR-193b-3p expression was assessed in a human mesenchymal stem cell (hMSC) model of chondrogenesis, in interleukin-1β (IL-1β)-treated primary human chondrocytes (PHCs), and in non-degraded and degraded cartilage. hMSCs and PHCs were transfected with miR-193b-3p or its antisense inhibitor. A direct interaction between miR-193b-3p and its putative binding site in the 3′-untranslated region (3′-UTR) of HDAC3 mRNA was confirmed by performing luciferase reporter assays. Chondrocytes were transfected with miR-193b-3p before performing a chromatin immunoprecipitation assay with an anti-acetylated histone H3 antibody. To investigate miR-193b-3p-transfected PHCs in vivo, they were seeded in tricalcium phosphate-collagen-hyaluronate (TCP-COL-HA) scaffolds, which were then implanted in nude mice. In addition, plasma exosomal miR-193b-3p in samples from normal controls and patients with osteoarthritis (OA) were measured. Results: miR-193b-3p expression was elevated in chondrogenic and hypertrophic hMSCs, while expression was significantly reduced in degraded cartilage compared to non-degraded cartilage. In addition, miR-193b-3p suppressed the activity of reporter constructs containing the 3′-UTR of HDAC3, inhibited HDAC3 expression, and promoted histone H3 acetylation in the COL2A1, AGGRECAN, COMP, and SOX9 promoters. Treatment with the HDAC inhibitor trichostatin A (TSA) increased cartilage-specific gene expression and enhanced hMSCs chondrogenesis. TSA also increased AGGRECAN expression and decreased MMP13 expression in IL-1β-treated PHCs. Further, 8 weeks after implanting PHC-seeded TCP-COL-HA scaffolds subcutaneously in nude mice, we found that miR-193b overexpression strongly enhanced in vivo cartilage formation compared to that found under control conditions. We also found that patients with OA had lower plasma exosomal miR-193b levels than control subjects. Conclusions: These findings indicate that miR-193b-3p directly targets HDAC3, promotes H3 acetylation, and regulates hMSC chondrogenesis and metabolism in PHCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cartilage contains mixed fibrils of collagen types II, IX, and XI

              The distribution of collagen XI in fibril fragments from 17-d chick embryo sternal cartilage was determined by immunoelectron microscopy using specific polyclonal antibodies. The protein was distributed throughout the fibril fragments but was antigenically masked due to the tight packing of collagen molecules and could be identified only at sites where the fibril structure was partially disrupted. Collagens II and IX were also distributed uniformly along fibrils but, in contrast to collagen XI, were accessible to the antibodies in intact fibrils. Therefore, cartilage fibrils are heterotypically assembled from collagens II, IX, and XI. This implies that collagen XI is an integral component of the cartilage fibrillar network and homogeneously distributed throughout the tissue. This was confirmed by immunofluorescence.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 May 2020
                12 May 2020
                : 12
                : 9
                : 7694-7703
                Affiliations
                [1 ]Department of Rehabilitation Medicine, Kunshan Rehabilitation Hospital, Suzhou 210000, China
                [2 ]Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu 200011, China
                [3 ]School of Kinesiology, Shanghai University of Sport, Yangpu District, Shanghai 200438, China
                [4 ]Clinical and Translational Research Center for 3D Printing Technology, Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
                Author notes
                [*]

                Equal contribution

                Correspondence to: Ye Sun; email: Sunye881005@163.com
                Correspondence to: Yuxin Zhang; email: Zhangyuxin9th@163.com
                Article
                103040 103040
                10.18632/aging.103040
                7244083
                32396528
                e68a9be5-0c35-4330-94b9-44fdc47af2f7
                Copyright © 2020 Xu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 January 2020
                : 10 March 2020
                Categories
                Research Paper

                Cell biology
                developmental dysplasia of the hip,col11a2,single nucleotide polymorphism,gene expression,association study

                Comments

                Comment on this article