13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Pharmacokinetics and Pharmacodynamics of a Novel Sodium-Glucose Cotransporter 2 Inhibitor, DWP16001, with Dapagliflozin and Ipragliflozin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since sodium-glucose cotransporter 2 (SGLT2) inhibitors reduced blood glucose level by inhibiting renal tubular glucose reabsorption mediated by SGLT2, we aimed to investigate the pharmacokinetics and kidney distribution of DWP16001, a novel SGLT2 inhibitor, and to compare these properties with those of dapagliflozin and ipragliflozin, representative SGLT2 inhibitors. The plasma exposure of DWP16001 was comparable with that of ipragliflozin but higher than that of dapagliflozin. DWP16001 showed the highest kidney distribution among three SGLT2 inhibitors when expressed as an area under curve (AUC) ratio of kidney to plasma (85.0 ± 16.1 for DWP16001, 64.6 ± 31.8 for dapagliflozin and 38.4 ± 5.3 for ipragliflozin). The organic anion transporter-mediated kidney uptake of DWP16001 could be partly attributed to the highest kidney uptake. Additionally, DWP16001 had the lowest half-maximal inhibitory concentration (IC 50) to SGLT2, a target transporter (0.8 ± 0.3 nM for DWP16001, 1.6 ± 0.3 nM for dapagliflozin, and 8.9 ± 1.7 nM for ipragliflozin). The inhibition mode of DWP16001 on SGLT2 was reversible and competitive, but the recovery of the SGLT2 inhibition after the removal of SGLT2 inhibitors in CHO cells overexpressing SGLT2 was retained with DWP16001, which is not the case with dapagliflozin and ipragliflozin. In conclusion, selective and competitive SGLT2 inhibition of DWP16001 could potentiate the efficacy of DWP16001 in coordination with the higher kidney distribution and retained SGLT2 inhibition of DWP16001 relative to dapagliflozin and ipragliflozin.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          SGLT2 inhibition--a novel strategy for diabetes treatment.

          Inhibiting sodium-glucose co-transporters (SGLTs), which have a key role in the reabsorption of glucose in the kidney, has been proposed as a novel therapeutic strategy for diabetes. Genetic mutations in the kidney-specific SGLT2 isoform that result in benign renal glycosuria, as well as preclinical and clinical studies with SGLT2 inhibitors in type 2 diabetes, support the potential of this approach. These investigations indicate that elevating renal glucose excretion by suppressing SGLT2 can reduce plasma glucose levels, as well as decrease weight. Although data from ongoing Phase III trials of these agents are needed to more fully assess safety, results suggest that the beneficial effects of SGLT2 inhibition might be achieved without exerting significant side effects--an advantage over many current diabetes medications. This article discusses the role of SGLT2 in glucose homeostasis and the evidence available so far on the therapeutic potential of blocking these transporters in the treatment of diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors.

            Empagliflozin is a selective sodium glucose cotransporter-2 (SGLT-2) inhibitor in clinical development for the treatment of type 2 diabetes mellitus. This study assessed pharmacological properties of empagliflozin in vitro and pharmacokinetic properties in vivo and compared its potency and selectivity with other SGLT-2 inhibitors. [(14)C]-alpha-methyl glucopyranoside (AMG) uptake experiments were performed with stable cell lines over-expressing human (h) SGLT-1, 2 and 4. Two new cell lines over-expressing hSGLT-5 and hSGLT-6 were established and [(14)C]-mannose and [(14)C]-myo-inositol uptake assays developed. Binding kinetics were analysed using a radioligand binding assay with [(3)H]-labelled empagliflozin and HEK293-hSGLT-2 cell membranes. Acute in vivo assessment of pharmacokinetics was performed with normoglycaemic beagle dogs and Zucker diabetic fatty (ZDF) rats. Empagliflozin has an IC(50) of 3.1 nM for hSGLT-2. Its binding to SGLT-2 is competitive with glucose (half-life approximately 1 h). Compared with other SGLT-2 inhibitors, empagliflozin has a high degree of selectivity over SGLT-1, 4, 5 and 6. Species differences in SGLT-1 selectivity were identified. Empagliflozin pharmacokinetics in ZDF rats were characterised by moderate total plasma clearance (CL) and bioavailability (BA), while in beagle dogs CL was low and BA was high. Empagliflozin is a potent and competitive SGLT-2 inhibitor with an excellent selectivity profile and the highest selectivity window of the tested SGLT-2 inhibitors over hSGLT-1. Empagliflozin represents an innovative therapeutic approach to treat diabetes. © 2011 Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              SGLT2 Inhibitors in Combination Therapy: From Mechanisms to Clinical Considerations in Type 2 Diabetes Management

                Bookmark

                Author and article information

                Journal
                Pharmaceutics
                Pharmaceutics
                pharmaceutics
                Pharmaceutics
                MDPI
                1999-4923
                15 March 2020
                March 2020
                : 12
                : 3
                : 268
                Affiliations
                [1 ]College of Pharmacy, Dankook University, Cheon-an 31116, Korea; minkoochoi@ 123456dankook.ac.kr
                [2 ]College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; goddns159@ 123456nate.com
                [3 ]Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido 17028, Korea; hychi138@ 123456daewoong.co.kr (H.-Y.J.); mjpark201@ 123456daewoong.co.kr (M.J.P.); jschoi172@ 123456daewoong.co.kr (J.-S.C.)
                Author notes
                [* ]Correspondence: isssong@ 123456knu.ac.kr ; Tel.: +82-53-950-8575
                Author information
                https://orcid.org/0000-0002-4564-709X
                Article
                pharmaceutics-12-00268
                10.3390/pharmaceutics12030268
                7151106
                32183468
                e64b3ab5-0f66-4b7f-9549-2e57ecb9554b
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 February 2020
                : 12 March 2020
                Categories
                Article

                sodium-glucose cotransporter 2 (sglt2) inhibitors,dwp16001,kidney distribution,inhibition mode

                Comments

                Comment on this article