20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.

          Abstract

          The lithium solvation structure in the electrolyte solution for lithium-ion batteries has not been fully understood. Here, the authors show ultrafast fluxional exchange of carbonate solvent molecules in and out of lithium-ion solvation sheath utilizing coherent two-dimensional infrared spectroscopy.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.

          Kang Xu (2004)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Electrolytes and interphases in Li-ion batteries and beyond.

            Kang Xu (2014)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries.

              Lithium-ion batteries raise safety, environmental, and cost concerns, which mostly arise from their nonaqueous electrolytes. The use of aqueous alternatives is limited by their narrow electrochemical stability window (1.23 volts), which sets an intrinsic limit on the practical voltage and energy output. We report a highly concentrated aqueous electrolyte whose window was expanded to ~3.0 volts with the formation of an electrode-electrolyte interphase. A full lithium-ion battery of 2.3 volts using such an aqueous electrolyte was demonstrated to cycle up to 1000 times, with nearly 100% coulombic efficiency at both low (0.15 coulomb) and high (4.5 coulombs) discharge and charge rates.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                08 March 2017
                2017
                : 8
                : 14658
                Affiliations
                [1 ]Department of Chemistry, Kunsan National University , Kunsan, Jeonbuk 573-701, Korea
                [2 ]Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University , Seoul 02841, Korea
                [3 ]Department of Chemistry, Korea University , Seoul 02841, Korea
                Author notes
                Author information
                http://orcid.org/0000-0003-1618-1056
                Article
                ncomms14658
                10.1038/ncomms14658
                5344975
                28272396
                e62874a6-de0f-46dd-9d59-8c912655be37
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 25 July 2016
                : 20 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article