21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Circular RNA-MicroRNA-Messenger RNA Regulatory Network in Atrial Fibrillation by Integrated Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Circular RNA (circRNA) is a noncoding RNA that forms a closed-loop structure, and its abnormal expression may cause disease. We aimed to find potential network for circRNA-related competitive endogenous RNA (ceRNA) in atrial fibrillation (AF).

          Methods

          The circRNA, miRNA, and mRNA expression profiles in the heart tissue from AF patients were retrieved from the Gene Expression Omnibus database and analyzed comprehensively. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were identified, followed by the establishment of DEcircRNA-DEmiRNA-DEmRNA regulatory network. Functional annotation analysis of host gene of DEcircRNAs and DEmRNAs in ceRNA regulatory network was performed. In vitro experiment and electronic validation were used to validate the expression of DEcircRNAs, DEmiRNAs, and DEmRNAs.

          Results

          A total of 1611 DEcircRNAs, 51 DEmiRNAs, and 1250 DEmRNAs were identified in AF. The DEcircRNA-DEmiRNA-DEmRNA network contained 62 circRNAs, 14 miRNAs, and 728 mRNAs. Among which, two ceRNA regulatory pairs of hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 were identified. In addition, six miRNA-mRNA regulatory pairs including hsa-miR-34c-5p-INMT, hsa-miR-1253-DDIT4L, hsa-miR-508-5p-SMOC2, hsa-miR-943-ACTA1, hsa-miR-338-3p-WIPI1, and hsa-miR-199a-3p-RAP1GAP2 were also obtained. MTOR was a significantly enriched signaling pathway of host gene of DEcircRNAs. In addition, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy were remarkably enriched signaling pathways of DEmRNAs in DEcircRNA-DEmiRNA-DEmRNA regulatory network. The expression validation of hsa-circRNA-402565, hsa-miR-34c-5p, hsa-miR-188-5p, SPON1, DDIT4L, SMOC2, and WIPI1 was consistent with the integrated analysis.

          Conclusion

          We speculated that hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 interaction pairs may be involved in AF.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Functional screening identifies miRNAs inducing cardiac regeneration.

          In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arrhythmogenic Cardiomyopathy.

            Arrhythmogenic cardiomyopathy is an inherited heart muscle disorder, predisposing to sudden cardiac death, particularly in young patients and athletes. Pathological features include loss of myocytes and fibrofatty replacement of right ventricular myocardium; biventricular involvement is often observed. It is a cell-to-cell junction cardiomyopathy, typically caused by genetically determined abnormalities of cardiac desmosomes, which leads to detachment of myocytes and alteration of intracellular signal transduction. The diagnosis of arrhythmogenic cardiomyopathy does not rely on a single gold standard test but is achieved using a scoring system, which encompasses familial and genetic factors, ECG abnormalities, arrhythmias, and structural/functional ventricular alterations. The main goal of treatment is the prevention of sudden cardiac death. Implantable cardioverter defibrillator is the only proven lifesaving therapy; however, it is associated with significant morbidity because of device-related complications and inappropriate implantable cardioverter defibrillator interventions. Selection of patients who are the best candidates for implantable cardioverter defibrillator implantation is one of the most challenging issues in the clinical management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial fusion is essential for organelle function and cardiac homeostasis.

              Mitochondria constitute 30% of myocardial mass. Mitochondrial fusion and fission appear essential for health of most tissues. Mitochondrial fission occurs in neonatal cardiomycyte and is implicated in cardiomyocyte death. Mitochondrial fusion has not been observed in postmitotic myocytes of adult hearts, and its occurrence and function in this context are controversial. Determine the consequences on organelle and organ function of disrupting cardiomyocyte mitochondrial fusion in vivo. The murine mfn1 and mfn2 genes, encoding mitofusins (Mfn) 1 and 2 that mediate mitochondrial tethering and outer mitochondrial membrane fusion, were interrupted by Cre-mediated excision of essential exons in neonatal (Nkx2.5-Cre) and adult (MYH6 modified estrogen receptor-Cre-modified estrogen receptor plus tamoxifen or Raloxifene) hearts. Embryonic combined Mfn1/Mfn2 ablation was lethal after e9.5. Conditional combined Mfn1/Mfn2 ablation in adult hearts induced mitochondrial fragmentation, cardiomyocyte and mitochondrial respiratory dysfunction, and rapidly progressive and lethal dilated cardiomyopathy. Before heart failure developed, cardiomyocyte shortening and calcium cycling were unaffected by absence of Mfn1 and Mfn2. Based on the time course over which fusion-defective mitochondrial size decreases, a mitochondrial fusion/fission cycle in adult mouse hearts occurs approximately every 16 days. Mitochondrial fusion in adult cardiac myocytes is necessary to maintain normal mitochondrial morphology and is essential for normal cardiac respiratory and contractile function. Interruption of mitochondrial fusion causes lethal cardiac failure at a time corresponding to 3 or 4 cycles of unopposed mitochondrial fission.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2020
                29 September 2020
                : 2020
                : 8037273
                Affiliations
                Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
                Author notes

                Academic Editor: Cheng-I Cheng

                Author information
                https://orcid.org/0000-0002-5296-582X
                https://orcid.org/0000-0002-3857-0995
                https://orcid.org/0000-0002-9829-1744
                https://orcid.org/0000-0002-0648-1664
                https://orcid.org/0000-0001-9798-9983
                https://orcid.org/0000-0002-4740-3320
                Article
                10.1155/2020/8037273
                7545447
                33062700
                e60f17fe-8e01-4c9f-b50a-a59c68a984e2
                Copyright © 2020 Tao Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 April 2020
                : 13 August 2020
                : 14 August 2020
                Categories
                Research Article

                Comments

                Comment on this article