190
views
0
recommends
+1 Recommend
0 collections
    10
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aggresomes: A Cellular Response to Misfolded Proteins

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular chaperones in cellular protein folding.

          F U Hartl (1996)
          The folding of many newly synthesized proteins in the cell depends on a set of conserved proteins known as molecular chaperones. These prevent the formation of misfolded protein structures, both under normal conditions and when cells are exposed to stresses such as high temperature. Significant progress has been made in the understanding of the ATP-dependent mechanisms used by the Hsp70 and chaperonin families of molecular chaperones, which can cooperate to assist in folding new polypeptide chains.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.

            Overlapping complementary DNA clones were isolated from epithelial cell libraries with a genomic DNA segment containing a portion of the putative cystic fibrosis (CF) locus, which is on chromosome 7. Transcripts, approximately 6500 nucleotides in size, were detectable in the tissues affected in patients with CF. The predicted protein consists of two similar motifs, each with (i) a domain having properties consistent with membrane association and (ii) a domain believed to be involved in ATP (adenosine triphosphate) binding. A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ER-to-Golgi transport visualized in living cells.

              Newly synthesized proteins that leave the endoplasmic reticulum (ER) are funnelled through the Golgi complex before being sorted for transport to their different final destinations. Traditional approaches have elucidated the biochemical requirements for such transport and have established a role for transport intermediates. New techniques for tagging proteins fluorescently have made it possible to follow the complete life history of single transport intermediates in living cells, including their formation, path and velocity en route to the Golgi complex. We have now visualized ER-to-Golgi transport using the viral glycoprotein ts045 VSVG tagged with green fluorescent protein (VSVG-GFP). Upon export from the ER, VSVG-GFP became concentrated in many differently shaped, rapidly forming pre-Golgi structures, which translocated inwards towards the Golgi complex along microtubules by using the microtubule minus-end-directed motor complex of dynein/dynactin. No loss of fluorescent material from pre-Golgi structures occurred during their translocation to the Golgi complex and they frequently stretched into tubular shapes. Together, our results indicate that these pre-Golgi carrier structures moving unidirectionally along microtubule tracks are responsible for transporting VSVG-GFP through the cytoplasm to the Golgi complex. This contrasts with the traditional focus on small vesicles as the primary vehicles for ER-to-Golgi transport.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                28 December 1998
                : 143
                : 7
                : 1883-1898
                Affiliations
                Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
                Author notes

                Address correspondence to R. Kopito, Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020. Tel.: (650) 723-7581. Fax: (650) 723-8475. E-mail: Kopito@ 123456leland.stanford.edu

                Article
                10.1083/jcb.143.7.1883
                2175217
                9864362
                e602e176-1542-4476-9fb6-6544fe2b22cd
                Copyright @ 1998
                History
                : 6 October 1998
                : 9 November 1998
                Categories
                Regular Articles

                Cell biology
                ubiquitin,proteasome,intermediate filaments,protein aggregation,presenilin
                Cell biology
                ubiquitin, proteasome, intermediate filaments, protein aggregation, presenilin

                Comments

                Comment on this article