34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hyphal induction under the condition without inoculation in Candida albicans is triggered by Brg1-mediated removal of NRG1 inhibition : Mechanism for C. albicans hyphal growth in log phase cells

      1 , 1 , 1 , 1 , 1
      Molecular Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Nonfilamentous C. albicans mutants are avirulent.

          Candida albicans and Saccharomyces cerevisiae switch from a yeast to a filamentous form. In Saccharomyces, this switch is controlled by two regulatory proteins, Ste12p and Phd1p. Single-mutant strains, ste12/ste12 or phd1/phd1, are partially defective, whereas the ste12/ste12 phd1/phd1 double mutant is completely defective in filamentous growth and is noninvasive. The equivalent cph1/cph1 efg1/efg1 double mutant in Candida (Cph1p is the Ste12p homolog and Efg1p is the Phd1p homolog) is also defective in filamentous growth, unable to form hyphae or pseudohyphae in response to many stimuli, including serum or macrophages. This Candida cph1/cph1 efg1/efg1 double mutant, locked in the yeast form, is avirulent in a mouse model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Candidalysin is a fungal peptide toxin critical for mucosal infection

            Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Until now human pathogenic fungi were not known to possess such toxins. Here we identify the first fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signaling pathway and activates epithelial immunity. Toxin-mediated membrane permeabilization is enhanced by a positively charged C-terminus and triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name ‘Candidalysin’ for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The SAT1 flipper, an optimized tool for gene disruption in Candida albicans.

              The construction of Candida albicans mutants by targeted gene disruption usually depends on the use of nutritional markers for the selection of prototrophic transformants from auxotrophic host strains, but it is becoming increasingly evident that this strategy may cause difficulties in the interpretation of mutant phenotypes. Here, we describe a new method for inactivating both alleles of a target gene in C. albicans wild-type strains to obtain homozygous null mutants. The SAT1 flipping method relies on the use of a cassette that contains a dominant nourseothricin resistance marker (caSAT1) for the selection of integrative transformants and a C. albicans-adapted FLP gene that allows the subsequent excision of the cassette, which is flanked by FLP target sequences, from the genome. Two rounds of integration/excision generate homozygous mutants that differ from the wild-type parent strain only by the absence of the target gene, and reintegration of an intact gene copy for complementation of mutant phenotypes is performed in the same way. Transformants are obtained after only 1 day of growth on a selective medium, and integration into the target locus occurs with high specificity after adding homologous flanking sequences on both sides of the cassette. FLP-mediated excision of the SAT1 flipper cassette is achieved by simply growing the transformants for a few hours in medium without selective pressure, and nourseothricin-sensitive (NouS) derivatives can easily be identified by their slower growth on indicator plates containing a low concentration of nourseothricin. We demonstrate the use of the system by deleting the OPT1 gene, which encodes an oligopeptide transporter, in the C. albicans model strain SC5314. The null mutants became resistant to the toxic peptide KLLEth, and reintroduction of an intact OPT1 copy restored susceptibility. The SAT1 flipping method provides a highly efficient method for gene disruption in C. albicans wild-type strains, which eliminates currently encountered problems in the genetic analysis of this important human fungal pathogen.
                Bookmark

                Author and article information

                Journal
                Molecular Microbiology
                Molecular Microbiology
                Wiley
                0950382X
                May 2018
                May 2018
                March 23 2018
                : 108
                : 4
                : 410-423
                Affiliations
                [1 ]Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
                Article
                10.1111/mmi.13944
                29485686
                e5f5d810-a834-4666-86cb-4a42da8ffffe
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article