92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental Effects of BPA : Focus on Aquatic Species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Research on bisphenol A (BPA) as an environmental contaminant has now major regulatory implications toward the ecosystem health, and hence it is incumbent on scientists to do their research to the highest standards possible, in order that the most appropriate decisions are made to mitigate the impacts to aquatic wildlife. However, the contribution given so far appears rather fragmented. The present overview aims to collect available information on the effects of BPA on aquatic vertebrates and invertebrates to provide a general scenario and to suggest future developments toward more comprehensive approaches useful for aquatic species protection.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          A review of the environmental fate, effects, and exposures of bisphenol A.

          Bisphenol A (CAS 85-05-7) may be released into the environment through its use and handling, and permitted discharges. BPA is moderately soluble (120 to 300 mg/L at pH 7), may adsorb to sediment (Koc 314 to 1524), has low volatility, and is not persistent based on its rapid biodegradation in acclimated wastewater treatment plants and receiving waters (half-lives 2.5 to 4 days). BPA is "slightly to moderately" toxic (algal EC50 of 1000 micrograms/L) and has low potential for bioaccumulation in aquatic organisms (BCFs 5 to 68). The chronic NOEC for Daphnia magna is > 3146 micrograms/L. Surface water concentrations are at least one to several orders of magnitude lower than chronic effects, with most levels nondetected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bisphenol A exposure, effects, and policy: a wildlife perspective.

            Thousands of anthropogenic chemicals are present in the environment, and mounting evidence indicates that some have endocrine-disrupting effects in a variety of organisms. Of particular concern are chemicals that act as agonists or antagonists on vertebrate estrogen or androgen receptors. One such compound is bisphenol A (BPA), which appears to be both an estrogen receptor agonist and an androgen receptor antagonist. Used in the manufacture of plastic resins, BPA is found at low levels in surface-water, sediments, soils, and biota. Although it degrades quickly, it is pseudo-persistent in the environment because of continual inputs. Due to its environmental ubiquity, organisms may be exposed to BPA chronically or during sensitive life stages. While the impacts of BPA-related endocrine disruption in humans have been extensively studied, the endocrinal and systemic effects in wildlife are less well known. This article reviews the current state of knowledge of BPA inputs to the environment, routes of exposure, and effects on wildlife. We then critically examine the regulatory structure governing the environmental endpoints of BPA in the United States, European Union, and Canada, and discuss major challenges to the effective regulation of BPA. We conclude with a survey of treatment and mitigation options. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling.

              Receptors for sex and adrenal steroid hormones are absent from fully sequenced invertebrate genomes and have not been recovered from other invertebrates. Here we report the isolation of an estrogen receptor ortholog from the mollusk Aplysia californica and the reconstruction, synthesis, and experimental characterization of functional domains of the ancestral protein from which all extant steroid receptors (SRs) evolved. Our findings indicate that SRs are extremely ancient and widespread, having diversified from a primordial gene before the origin of bilaterally symmetric animals, and that this ancient receptor had estrogen receptor-like functionality. This gene was lost in the lineage leading to arthropods and nematodes and became independent of hormone regulation in the Aplysia lineage.
                Bookmark

                Author and article information

                Journal
                Dose Response
                Dose Response
                DOS
                spdos
                Dose-Response
                SAGE Publications (Sage CA: Los Angeles, CA )
                1559-3258
                28 July 2015
                Jul-Sep 2015
                : 13
                : 3
                : 1559325815598304
                Affiliations
                [1 ]Department of Earth, Environment and Life Sciences, University of Genoa, Genova, Italy
                [2 ]Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, Ravenna, Italy
                Author notes
                [*]Elena Fabbri, Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy. Email: elena.fabbri@ 123456unibo.it
                Article
                10.1177_1559325815598304
                10.1177/1559325815598304
                4674185
                26674307
                e5f009a5-3d52-4209-9b58-cc012cceeacf
                © The Author(s) 2015

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License ( http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                Categories
                Article
                Custom metadata
                July-September 2015

                bpa,endocrine disrupting chemicals (edc),dose–response,fish,amphibians,invertebrates

                Comments

                Comment on this article