7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A GP130-Targeting Small Molecule, LMT-28, Reduces LPS-Induced Bone Resorption around Implants in Diabetic Models by Inhibiting IL-6/GP130/JAK2/STAT3 Signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we examined the effect of the GP130-targeting molecule, LMT-28, on lipopolysaccharide- (LPS-) induced bone resorption around implants in diabetic models using in vitro and rat animal experiments. First, LMT-28 was added to osteoblasts stimulated by LPS and advanced glycation end products (AGEs), and nuclear factor- κB receptor-activating factor ligand (RANKL) and associated pathways were evaluated. Then, LMT-28 was administered by gavage at 0.23 mg/kg once every 5 days for 2 weeks to type 2 diabetic rats with peri-implantitis induced by LPS injection and silk ligature. The expression of IL-6 and RANKL was evaluated by immunohistochemistry, and the bone resorption around implants was evaluated by microcomputed tomography. The results showed that LMT-28 downregulated the expression of RANKL through the JAK2/STAT3 signaling pathway in osteoblasts stimulated by LPS and AGEs, reduced bone resorption around implants with peri-implantitis, decreased the expression of IL-6 and RANKL, and decreased osteoclast activity in type 2 diabetic rats. This study confirmed the ability of LMT-28 to reduce LPS-induced bone resorption around implants in diabetic rats.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae.

          IL-6, leukemia inhibitory factor (LIF), and oncostatin M (OSM) are IL-6-type cytokines that stimulate osteoclast formation and function. In the present study, the resorptive effects of these agents and their regulation of receptor activator of NF-kappaB ligand (RANKL), RANK, and osteoprotegerin (OPG) were studied in neonatal mouse calvaria. When tested separately, neither human (h) IL-6 nor the human soluble IL-6R (shIL-6R) stimulated bone resorption, but when hIL-6 and the shIL-6R were combined, significant stimulation of both mineral and matrix release from bone explants was noted. Semiquantitative RT-PCR showed that hIL-6 plus shIL-6R enhanced the expression of RANKL and OPG in calvarial bones, but decreased RANK expression. Human LIF, hOSM, and mouse OSM (mOSM) also stimulated 45Ca release and enhanced the mRNA expression of RANKL and OPG in mouse calvaria, but had no effect on the expression of RANK. In agreement with the RT-PCR analyses, ELISA measurements showed that both hIL-6 plus shIL-6R and mOSM increased RANKL and OPG proteins. 1,25-Dihydroxyvitamin D3 (D3) also increased the RANKL protein level, but decreased the protein level of OPG. OPG inhibited 45Ca release stimulated by RANKL, hIL-6 plus shIL-6R, hLIF, hOSM, mOSM, and D3. An Ab neutralizing mouse gp130 inhibited 45Ca release induced by hIL-6 plus shIL-6R. These experiments demonstrated stimulation of calvarial bone resorption and regulation of mRNA and protein expression of RANKL and OPG by D3 and IL-6 family cytokines as well as regulation of RANK expression in preosteoclasts/osteoclasts of mouse calvaria by D3 and hIL-6 plus shIL-6R.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NF-kappaB modulators in osteolytic bone diseases.

            Osteoclasts are responsible for bone resorption and play a pivotal role in the pathogenesis of osteolytic disorders. NF-kappaB is a set of nuclear factors that bind to consensus DNA sequences called kappaB sites, and is essential for osteoclast formation and survival. NF-kappaB signalling pathways are strictly regulated to maintain bone homeostasis by cytokines such as RANKL, TNF-alpha and IL-1, which differentially regulate classical and/or alternative NF-kappaB pathways in osteoclastic cells. These pathways are also modulated by NF-kappaB mediators, including TRAF6, aPKC, p62/SQSTM1 and deubiquitinating enzyme CYLD that are involved in the ubiquitin-proteasome system during RANK-mediated osteoclastogenesis. Abnormal activation of NF-kappaB signalling in osteoclasts has been associated with excessive osteoclastic activity, and frequently observed in osteolytic conditions, including periprosthetic osteolysis, arthritis, Paget's disease of bone, and periodontitis. NF-kappaB modulators such as parthenolide and NEMO-binding domain peptide demonstrate therapeutic effects on inflammation-induced bone destruction in mouse models. Unravelling the structure and function of NF-kappaB pathways in osteoclasts and other cell types will be important in developing new strategies for treatments of bone diseases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism

                Bookmark

                Author and article information

                Contributors
                Journal
                Mediators Inflamm
                Mediators Inflamm
                mi
                Mediators of Inflammation
                Hindawi
                0962-9351
                1466-1861
                2023
                6 January 2023
                : 2023
                : 9330439
                Affiliations
                The Affiliated Stomatological Hospital of Southwest Medical University, 2, Jiangyang Nan Road, Luzhou, China
                Author notes

                Academic Editor: Carla Sipert

                Author information
                https://orcid.org/0000-0001-7677-9901
                https://orcid.org/0000-0002-3939-9456
                Article
                10.1155/2023/9330439
                9839413
                36643585
                e5ef0d9b-3c2c-4c50-bbda-ebd4c4b77bf6
                Copyright © 2023 Qi-qi Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 September 2022
                : 10 December 2022
                : 14 December 2022
                Funding
                Funded by: Key Research and Development Program of Sichuan Province
                Award ID: 22ZDYF3789
                Funded by: Southwest Medical University
                Award ID: 2020LZXNYDJ31
                Funded by: Office of Science & Technology and Talent Work of Luzhou
                Categories
                Research Article

                Immunology
                Immunology

                Comments

                Comment on this article