10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An update on the role of bronchoscopy in the diagnosis of pulmonary disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bronchoscopy has evolved over the past few decades and has been used by respiratory physicians to diagnose various airway and lung diseases. With the popularization of medical check-ups and growing interest in health, early diagnosis of lung diseases is essential. With the development of endobronchial ultrasound, ultrathin bronchoscopy, and electromagnetic navigational bronchoscopy, bronchoscopy has been able to widen its scope in diagnosing pulmonary diseases. In this review, we have described the brief history, role, and complications of bronchoscopy used in diagnosing pulmonary lesions, from simple flexible bronchoscopy to bronchoscopy combined with several up-to-date technologies.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines.

          Correctly staging lung cancer is important because the treatment options and prognosis differ significantly by stage. Several noninvasive imaging studies and invasive tests are available. Understanding the accuracy, advantages, and disadvantages of the available methods for staging non-small cell lung cancer is critical to decision-making. Test accuracies for the available staging studies were updated from the second iteration of the American College of Chest Physicians Lung Cancer Guidelines. Systematic searches of the MEDLINE database were performed up to June 2012 with the inclusion of selected meta-analyses, practice guidelines, and reviews. Study designs and results are summarized in evidence tables. The sensitivity and specificity of CT scanning for identifying mediastinal lymph node metastasis were approximately 55% and 81%, respectively, confirming that CT scanning has limited ability either to rule in or exclude mediastinal metastasis. For PET scanning, estimates of sensitivity and specificity for identifying mediastinal metastasis were approximately 77% and 86%, respectively. These findings demonstrate that PET scanning is more accurate than CT scanning, but tissue biopsy is still required to confirm PET scan findings. The needle techniques endobronchial ultrasound-needle aspiration, endoscopic ultrasound-needle aspiration, and combined endobronchial ultrasound/endoscopic ultrasound-needle aspiration have sensitivities of approximately 89%, 89%, and 91%, respectively. In direct comparison with surgical staging, needle techniques have emerged as the best first diagnostic tools to obtain tissue. Based on randomized controlled trials, PET or PET-CT scanning is recommended for staging and to detect unsuspected metastatic disease and avoid noncurative resections. Since the last iteration of the staging guidelines, PET scanning has assumed a more prominent role both in its use prior to surgery and when evaluating for metastatic disease. Minimally invasive needle techniques to stage the mediastinum have become increasingly accepted and are the tests of first choice to confirm mediastinal disease in accessible lymph node stations. If negative, these needle techniques should be followed by surgical biopsy. All abnormal scans should be confirmed by tissue biopsy (by whatever method is available) to ensure accurate staging. Evidence suggests that more complete staging improves patient outcomes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults: accredited by NICE.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines.

              Lung cancer is usually suspected in individuals who have an abnormal chest radiograph or have symptoms caused by either local or systemic effects of the tumor. The method of diagnosis of lung cancer depends on the type of lung cancer (small cell lung cancer or non-small cell lung cancer [NSCLC]), the size and location of the primary tumor, the presence of metastasis, and the overall clinical status of the patient. The objective of this study was to determine the test performance characteristics of various modalities for the diagnosis of suspected lung cancer. To update previous recommendations on techniques available for the initial diagnosis of lung cancer, a systematic search of the MEDLINE, Healthstar, and Cochrane Library databases covering material to July 2011 and print bibliographies was performed to identify studies comparing the results of sputum cytology, conventional bronchoscopy, flexible bronchoscopy (FB), electromagnetic navigation (EMN) bronchoscopy, radial endobronchial ultrasound (R-EBUS)-guided lung biopsy, transthoracic needle aspiration (TTNA) or biopsy, pleural fluid cytology, and pleural biopsy with histologic reference standard diagnoses among at least 50 patients with suspected lung cancer. Recommendations were developed by the writing committee, graded by a standardized method (see the article "Methodology for Development of Guidelines for Lung Cancer" in this guideline), and reviewed by all members of the Lung Cancer Guideline Panel prior to approval by the Thoracic Oncology NetWork, the Guidelines Oversight Committee, and the Board of Regents of the American College of Chest Physicians. Sputum cytology is an acceptable method of establishing the diagnosis of lung cancer, with a pooled sensitivity rate of 66% and a specificity rate of 99%. However, the sensitivity of sputum cytology varies according to the location of the lung cancer. For central, endobronchial lesions, the overall sensitivity of FB for diagnosing lung cancer is 88%. The diagnostic yield of bronchoscopy decreases for peripheral lesions. Peripheral lesions < 2 or > 2 cm in diameter showed a sensitivity of 34% and 63%, respectively. R-EBUS and EMN are emerging technologies for the diagnosis of peripheral lung cancer, with diagnostic yields of 73% and 71%, respectively. The pooled sensitivity of TTNA for the diagnosis of lung cancer was 90%. A trend toward lower sensitivity was noted for lesions < 2 cm in diameter. TTNA is associated with a higher rate of pneumothorax compared with bronchoscopic procedures. In a patient with a malignant pleural effusion, pleural fluid cytology is reported to have a mean sensitivity of about 72%. A definitive diagnosis of metastatic disease to the pleural space can be estalished with a pleural biopsy. The diagnostic yield for closed pleural biopsy ranges from 38% to 47% and from 75% to 88% for image-guided closed biopsy. Thoracoscopic biopsy of the pleura carries the highest diagnostic yield, 95% to 97%. The accuracy in differentiating between small cell and non-small cell cytology for the various diagnostic modalities was 98%, with individual studies ranging from 94% to 100%. The average false-positive and false-negative rates were 9% and 2%, respectively. Although the distinction between small cell and NSCLC by cytology appears to be accurate, NSCLCs are clinically, pathologically, and molecularly heterogeneous tumors. In the past decade, clinical trials have shown us that NSCLCs respond to different therapeutic agents based on histologic phenotypes and molecular characteristics. The physician performing diagnostic procedures on a patient suspected of having lung cancer must ensure that adequate tissue is acquired to perform accurate histologic and molecular characterization of NSCLCs. The sensitivity of bronchoscopy is high for endobronchial disease and poor for peripheral lesions < 2 cm in diameter. The sensitivity of TTNA is excellent for malignant disease, but TTNA has a higher rate of pneumothorax than do bronchoscopic modalities. R-EBUS and EMN bronchoscopy show potential for increasing the diagnostic yield of FB for peripheral lung cancers. Thoracoscopic biopsy of the pleura has the highest diagnostic yield for diagnosis of metastatic pleural effusion in a patient with lung cancer. Adequate tissue acquisition for histologic and molecular characterization of NSCLCs is paramount.
                Bookmark

                Author and article information

                Journal
                Yeungnam Univ J Med
                Yeungnam Univ J Med
                YUJM
                Yeungnam University Journal of Medicine
                Yeungnam University College of Medicine
                2384-0293
                October 2020
                28 August 2020
                : 37
                : 4
                : 253-261
                Affiliations
                Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
                Author notes
                Corresponding author: June Hong Ahn Department of Internal Medicine, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea Tel: +82-53-640-6577 Fax: +82-53-620-3849 E-mail: fireajh@ 123456gmail.com
                Author information
                http://orcid.org/0000-0001-7104-8325
                Article
                yujm-2020-00584
                10.12701/yujm.2020.00584
                7606953
                32891075
                e5bb0a5b-1532-4018-a1ed-f2dd160d25ac
                Copyright © 2020 Yeungnam University College of Medicine

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 July 2020
                : 7 August 2020
                : 8 August 2020
                Categories
                Review Article

                bronchoscopy,cryobiopsy,electromagnetic navigation bronchoscopy,endobronchial ultrasound,lung diseases

                Comments

                Comment on this article