Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Levels of procoagulant microvesicles are elevated after traumatic injury and platelet microvesicles are negatively correlated with mortality

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Microvesicles (MV) have been implicated in the development of thrombotic disease, such as acute respiratory distress syndrome (ARDS) and multiple organ failure (MOF). Trauma patients are at increased risk of late thrombotic events, particularly those who receive a major transfusion. The aims of this study were: (a) to determine whether there were increased numbers of pro-coagulant MV following injury; (b) to determine their cellular origin; and (c) to explore the effects of MV with clinical outcomes; in particular red cell transfusion requirements and death.

          Methods

          Trauma patients were recruited at a Level 1 trauma centre. The presence of MV procoagulant phospholipid (PPL) was assessed using 2 activity assays (PPL and thrombin generation). Enumeration and MV cellular origin was assessed using 2 colour flow cytometry.

          Results

          Fifty consecutive patients were recruited; median age 38 (IQR: 24–55), median ISS 18 (IQR: 9–27). Circulating procoagulant MV, rich in phospholipid, were significantly elevated following traumatic injury relative to controls and remained elevated at 72 h post-injury. Red cell/AnnV+ and platelet/AnnV+ MV numbers were 6-fold and 2-fold higher than controls, respectively. Patients who died (n=9, 18%) had significantly fewer CD41/AnnV+ MV and lower endogenous thrombin potential relative to patients who survived.

          Conclusions

          MV are elevated following traumatic injury and may be implicated in the increased risk of trauma patients to pro-thrombotic states such as MOF and ARDS. Lower levels of procoagulant MV are associated with mortality and further investigation of this association is warranted.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Calibrated automated thrombin generation measurement in clotting plasma.

          Calibrated automated thrombography displays the concentration of thrombin in clotting plasma with or without platelets (platelet-rich plasma/platelet-poor plasma, PRP/PPP) in up to 48 samples by monitoring the splitting of a fluorogenic substrate and comparing it to a constant known thrombin activity in a parallel, non-clotting sample. Thus, the non-linearity of the reaction rate with thrombin concentration is compensated for, and adding an excess of substrate can be avoided. Standard conditions were established at which acceptable experimental variation accompanies sensitivity to pathological changes. The coefficients of variation of the surface under the curve (endogenous thrombin potential) are: within experiment approximately 3%; intra-individual: <5% in PPP, <8% in PRP; interindividual 15% in PPP and 19% in PRP. In PPP, calibrated automated thrombography shows all clotting factor deficiencies (except factor XIII) and the effect of all anticoagulants [AVK, heparin(-likes), direct inhibitors]. In PRP, it is diminished in von Willebrand's disease, but it also shows the effect of platelet inhibitors (e.g. aspirin and abciximab). Addition of activated protein C (APC) or thrombomodulin inhibits thrombin generation and reflects disorders of the APC system (congenital and acquired resistance, deficiencies and lupus antibodies) independent of concomitant inhibition of the procoagulant pathway as for example by anticoagulants. Copyright 2003 S. Karger AG, Basel
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial microparticles in diseases.

            Microparticles are submicron vesicles shed from plasma membranes in response to cell activation, injury, and/or apoptosis. The measurement of the phospholipid content (mainly phosphatidylserine; PSer) of microparticles and the detection of proteins specific for the cells from which they are derived has allowed their quantification and characterization. Microparticles of various cellular origin (platelets, leukocytes, endothelial cells) are found in the plasma of healthy subjects, and their amount increases under pathological conditions. Endothelial microparticles (EMP) not only constitute an emerging marker of endothelial dysfunction, but are also considered to play a major biological role in inflammation, vascular injury, angiogenesis, and thrombosis. Although the mechanisms leading to their in vivo formation remain obscure, the release of EMP from cultured cells can be caused in vitro by a number of cytokines and apoptotic stimuli. Recent studies indicate that EMP are able to decrease nitric-oxide-dependent vasodilation, increase arterial stiffness, promote inflammation, and initiate thrombosis at their PSer-rich membrane, which highly co-expresses tissue factor. EMP are known to be elevated in acute coronary syndromes, in severe hypertension with end organ damage, and in thrombotic thrombocytopenic purpura, all conditions associated with endothelial injury and pro-thrombotic state. The release of EMP has also been associated with endothelial dysfunction of patients with multiple sclerosis and lupus anticoagulant. More recent studies have focused on the role of low shear stress leading to endothelial cell apoptosis and subsequent EMP release in end-stage renal disease. Improved knowledge of EMP composition, their biological effects, and the mechanisms leading to their clearance will probably open new therapeutic approaches in the treatment of atherothrombosis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop.

                Bookmark

                Author and article information

                Journal
                J Extracell Vesicles
                J Extracell Vesicles
                JEV
                Journal of Extracellular Vesicles
                Co-Action Publishing
                2001-3078
                31 October 2014
                2014
                : 3
                : 10.3402/jev.v3.25625
                Affiliations
                [1 ]Oxford Haemophilia & Thrombosis Centre, Oxford University Hospitals Trust, Churchill Hospital, Oxford, UK
                [2 ]National Blood & Transplant, John Radcliffe Hospital, Oxford, UK
                [3 ]School of Immunity and Infection, University of Birmingham Medical School, Birmingham, UK
                Author notes
                [* ]Correspondence to: Paul Harrison, School of Immunity and Infection, University of Birmingham Medical School, Birmingham, B15 2TT, UK, Email: p.harrison.1@ 123456bham.ac.uk

                Responsible Editor: Peter Quesenberry, Brown University, United States; Elena Aikawa, Harvard Medical School, United States.

                Article
                25625
                10.3402/jev.v3.25625
                4216813
                26077419
                e59b838b-7b78-46c9-bdca-e799123966aa
                © 2014 Nicola Curry et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 August 2014
                : 03 October 2014
                : 08 October 2014
                Categories
                Original Research Article

                trauma,microvesicles,thrombin generation,flow cytometry
                trauma, microvesicles, thrombin generation, flow cytometry

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content236

                Cited by29

                Most referenced authors408