24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In Vitro and In Vivo Cytogenotoxic Effects of Hot Aqueous Extract of Achyrocline satureioides (Lam.) DC.

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work we extend the toxicological studies of hot aqueous extract of A. satureioides (As-HAE) evaluating cytotoxic and apoptotic effects on human peripheral blood mononuclear cells (PBMCs). We also determine genotoxic action of this extract in vivo. In addition, the extract was chemically characterized. Finally, we established a comparison with previous data of cold aqueous extract. The As-HAE induced cytotoxicity on PBMCs determined by trypan blue dye exclusion (CC 50 = 653  μg/mL) and MTT (CC 50 = 588  μg/mL) assays being more toxic than cold extract. However, As-HAE as well as cold extract did not induce apoptosis measured by Hoechst 33258 staining, TUNEL assay, and DNA fragmentation analysis. The in vivo micronucleus test showed that As-HAE exerted cytogenotoxic effects on bone marrow of mice, contrary to what was observed with cold extract. The chemical study of As-HAE allowed identifying the flavonoids found in cold extract: luteolin, quercetin, and 3- O-methylquercetin, but at higher concentrations. We suggest that toxic effects induced by As-HAE could be due to high concentrations of these flavonoids. Given that As-HAE is the most used in folkloric medicine, its administration should be controlled in order to prevent potential cell damage.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          The micronucleus test.

          W. Schmid (1975)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell death independent of caspases: a review.

            Patterns of cell death have been divided into apoptosis, which is actively executed by specific proteases, the caspases, and accidental necrosis. However, there is now accumulating evidence indicating that cell death can occur in a programmed fashion but in complete absence and independent of caspase activation. Alternative models of programmed cell death (PCD) have therefore been proposed, including autophagy, paraptosis, mitotic catastrophe, and the descriptive model of apoptosis-like and necrosis-like PCD. Caspase-independent cell death pathways are important safeguard mechanisms to protect the organism against unwanted and potential harmful cells when caspase-mediated routes fail but can also be triggered in response to cytotoxic agents or other death stimuli. As in apoptosis, the mitochondrion can play a key role but also other organelles such as lysosomes and the endoplasmic reticulum have an important function in the release and activation of death factors such as cathepsins, calpains, and other proteases. Here we review the various models of PCD and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of caspase-independent cell death pathways for cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Review of the biology of Quercetin and related bioflavonoids.

              The French paradox is a dietary anomaly which has focused attention on the Mediterranean diet. Epidemiological studies revealed that this diet, replete in flavonoid-rich foods (Allium and Brassica vegetables, and red wine), correlated with the increased longevity and decreased incidence of cardiovascular disease seen in these populations. The most frequently studied flavonoid, quercetin, has been shown to have biological properties consistent with its sparing effect on the cardiovascular system. Quercetin and other flavonoids have been shown to modify eicosanoid biosynthesis (antiprostanoid and anti-inflammatory responses), protect low-density lipoprotein from oxidation (prevent atherosclerotic plaque formation), prevent platelet aggregation (antithrombic effects), and promote relaxation of cardiovascular smooth muscle (antihypertensive, antiarrhythmic effects). In addition, flavonoids have been shown to have antiviral and carcinostatic properties. However, flavonoids are poorly absorbed from the gut and are subject to degradation by intestinal micro-organisms. The amount of quercetin that remains biologically available may not be of sufficient concentration, theoretically, to explain the beneficial effects seen with the Mediterranean diet. The role of flavonoids may transcend their presence in food. The activity of flavonoids as inhibitors of reverse transcriptase suggests a place for these compounds in the control of retrovirus infections, such as acquired immunodeficiency syndrome (AIDS). In addition to specific effects, the broad-modulating effects of flavonoids as antioxidants, inhibitors of ubiquitous enzymes (ornithine carboxylase, protein kinase, calmodulin), and promoters of vasodilatation and platelet disaggregation can serve as starting material for drug development programmes.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                11 May 2015
                : 2015
                : 270973
                Affiliations
                1Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Río Cuarto, C5800 Córdoba, Argentina
                2Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, C1033AAJ Buenos Aires, Argentina
                3Área de Microscopía Electrónica, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Río Cuarto, C5800 Córdoba, Argentina
                4Farmacognosia, Departamento de Farmacia, Universidad Nacional de Córdoba (IMBIV-CONICET), Ciudad Universitaria, C5000 Córdoba, Argentina
                Author notes

                Academic Editor: Isabel C. F. R. Ferreira

                Article
                10.1155/2015/270973
                4442415
                26078941
                e582a0e9-6327-47ed-af79-a2d91854a913
                Copyright © 2015 L. N. Cariddi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 December 2014
                : 1 February 2015
                : 1 February 2015
                Categories
                Research Article

                Comments

                Comment on this article