4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      α-Hederin inhibits the growth of lung cancer A549 cells in vitro and in vivo by decreasing SIRT6 dependent glycolysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context

          α-Hederin, a potent bioactive compound of Pulsatilla chinensis (Bunge) Regel (Ranunculaceae), has many pharmacological uses, but its effect on cancer cell metabolism is still unclear.

          Objective

          To elucidate the role of α-hederin in the glucose metabolism of lung cancer cells.

          Materials and methods

          Cell Counting Kit 8 and colony formation assays were employed to assess the antiproliferative effects of α-hederin. Glucose uptake, ATP generation, and lactate production were measured. Glycolysis-related proteins were detected using western blotting, and a sirtuin 6 (SIRT6) inhibitor was used to verify A549 cell proliferation. Sixty male BALB/c nude mice were divided into normal control, 5-FU (25 mg/kg), and α-hederin (5 and 10 mg/kg) groups to assess the antitumor effect for 32 days. Glycolysis-related protein expression was evaluated using immunohistochemical analysis.

          Results

          α-Hederin inhibited A549 (IC 50 = 13.75 μM), NCI-H460 (IC 50 = 17.57 μM), and NCI-H292 (IC 50 = 18.04 μM) proliferation; inhibited glucose uptake and ATP generation; and reduced lactate production. Furthermore, α-hederin (10 and 15 μM) markedly inhibited hexokinase 2, glucose transporter 1, pyruvate kinase M2, lactate dehydrogenase A, monocarboxylate transporter, c-Myc, hypoxia-inducible factor-1α, and activated SIRT6 protein expression. Using a SIRT6 inhibitor, we demonstrated that α-hederin inhibits glycolysis by activating SIRT6. A tumour xenograft mouse model of lung cancer confirmed that α-hederin (5 and 10 mg/kg) inhibits lung cancer growth by inhibiting glycolysis in vivo.

          Discussion and conclusions

          α-Hederin inhibits A549 cell growth by inhibiting SIRT6-dependent glycolysis. α-Hederin might serve as a potential agent to suppress cancer.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2020

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Otto Warburg's contributions to current concepts of cancer metabolism.

            Otto Warburg pioneered quantitative investigations of cancer cell metabolism, as well as photosynthesis and respiration. Warburg and co-workers showed in the 1920s that, under aerobic conditions, tumour tissues metabolize approximately tenfold more glucose to lactate in a given time than normal tissues, a phenomenon known as the Warburg effect. However, this increase in aerobic glycolysis in cancer cells is often erroneously thought to occur instead of mitochondrial respiration and has been misinterpreted as evidence for damage to respiration instead of damage to the regulation of glycolysis. In fact, many cancers exhibit the Warburg effect while retaining mitochondrial respiration. We re-examine Warburg's observations in relation to the current concepts of cancer metabolism as being intimately linked to alterations of mitochondrial DNA, oncogenes and tumour suppressors, and thus readily exploitable for cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              p53 regulates mitochondrial respiration.

              The energy that sustains cancer cells is derived preferentially from glycolysis. This metabolic change, the Warburg effect, was one of the first alterations in cancer cells recognized as conferring a survival advantage. Here, we show that p53, one of the most frequently mutated genes in cancers, modulates the balance between the utilization of respiratory and glycolytic pathways. We identify Synthesis of Cytochrome c Oxidase 2 (SCO2) as the downstream mediator of this effect in mice and human cancer cell lines. SCO2 is critical for regulating the cytochrome c oxidase (COX) complex, the major site of oxygen utilization in the eukaryotic cell. Disruption of the SCO2 gene in human cancer cells with wild-type p53 recapitulated the metabolic switch toward glycolysis that is exhibited by p53-deficient cells. That SCO2 couples p53 to mitochondrial respiration provides a possible explanation for the Warburg effect and offers new clues as to how p53 might affect aging and metabolism.
                Bookmark

                Author and article information

                Journal
                Pharm Biol
                Pharm Biol
                Pharmaceutical Biology
                Taylor & Francis
                1388-0209
                1744-5116
                27 December 2020
                2021
                : 59
                : 1
                : 11-20
                Affiliations
                [a ]National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine , Nanchang, China
                [b ]College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine , Nanchang, China
                Author notes
                [*]

                These authors are co-first authors.

                CONTACT Lanying Chen clyxy2513@ 123456163.com National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine , Nanchang, China
                Article
                1862250
                10.1080/13880209.2020.1862250
                7782159
                33356727
                e5395295-54eb-4c14-a379-c840a33b9c2c
                © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 9, Tables: 0, Pages: 10, Words: 5585
                Categories
                Research Article
                Research Article

                antitumor,warburg effect,glucose,c-myc,hif-1α
                antitumor, warburg effect, glucose, c-myc, hif-1α

                Comments

                Comment on this article