As enteric pathogens, Salmonella spp. are resistant to the actions of bile. Salmonella typhimurium and Salmonella typhi strains were examined to better define the bile resistance phenotype. The MICs of bile for wild-type S. typhimurium and S. typhi were 18 and 12%, respectively, and pretreatment of log-phase S. typhimurium with 15% bile dramatically increased bile resistance. Mutant strains of S. typhimurium and S. typhi lacking the virulence regulator PhoP-PhoQ were killed at significantly lower bile concentrations than wild-type strains, while strains with constitutively active PhoP were able to survive prolonged incubation with bile at concentrations of >60%. PhoP-PhoQ was shown to mediate resistance specifically to the bile components deoxycholate and conjugated forms of chenodeoxycholate, and the protective effect was not generalized to other membrane-active agents. Growth of both S. typhimurium and S. typhi in bile and in deoxycholate resulted in the induction or repression of a number of proteins, many of which appeared identical to PhoP-PhoQ-activated or -repressed products. The PhoP-PhoQ regulon was not induced by bile, nor did any of the 21 PhoP-activated or -repressed genes tested play a role in bile resistance. However, of the PhoP-activated or -repressed genes tested, two (prgC and prgH) were transcriptionally repressed by bile in the medium independent of PhoP-PhoQ. These data suggest that salmonellae can sense and respond to bile to increase resistance and that this response likely includes proteins that are members of the PhoP regulon. These bile- and PhoP-PhoQ-regulated products may play an important role in the survival of Salmonella spp. in the intestine or gallbladder.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.