33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptomic Analysis of Eucryptorrhynchus chinensis (Coleoptera: Curculionidae) Using 454 Pyrosequencing Technology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eucryptorrhynchus chinensis Olivier (Coleoptera: Curculionidae) is one of the most important pests of Ailanthus altissima; however, so far, no studies on the genome or transcriptome of E. chinensis have been reported. Using the Roche 454 FLX Titanium platform, an RNA pool obtained from E. chinensis eggs, larva, pupae, and adults was sequenced and assembled de novo to achieve maximum diversity of sampled transcripts. We obtained 1,441,137 (∼518 Mb) raw reads with an average length of 360 bp. After trimming, 89% qualified reads were produced and assembled into 35,509 isotigs with an average length of 440 bp, N50 of 1,048 bp, and 111,643 singletons. We generated 87,894 unigenes following a cluster analysis of the isotigs and singletons, and then functionally annotated the unigenes with gene descriptions. We obtained 23,363 GO assignments, and 12,724 unigenes were assigned to KOG. Based on these annotations, 294 biochemical pathways involved in growth, reproduction, and stress or immune responses were predicted. A total of 659,026 single nucleotide variants and 6,112 simple sequence repeats were detected. Our data provide comprehensive information on the sequence and possible functions of E. chinensis transcripts.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).

          A software tool was developed for the identification of simple sequence repeats (SSRs) in a barley ( Hordeum vulgare L.) EST (expressed sequence tag) database comprising 24,595 sequences. In total, 1,856 SSR-containing sequences were identified. Trimeric SSR repeat motifs appeared to be the most abundant type. A subset of 311 primer pairs flanking SSR loci have been used for screening polymorphisms among six barley cultivars, being parents of three mapping populations. As a result, 76 EST-derived SSR-markers were integrated into a barley genetic consensus map. A correlation between polymorphism and the number of repeats was observed for SSRs built of dimeric up to tetrameric units. 3'-ESTs yielded a higher portion of polymorphic SSRs (64%) than 5'-ESTs did. The estimated PIC (polymorphic information content) value was 0.45 +/- 0.03. Approximately 80% of the SSR-markers amplified DNA fragments in Hordeum bulbosum, followed by rye, wheat (both about 60%) and rice (40%). A subset of 38 EST-derived SSR-markers comprising 114 alleles were used to investigate genetic diversity among 54 barley cultivars. In accordance with a previous, RFLP-based, study, spring and winter cultivars, as well as two- and six-rowed barleys, formed separate clades upon PCoA analysis. The results show that: (1) with the software tool developed, EST databases can be efficiently exploited for the development of cDNA-SSRs, (2) EST-derived SSRs are significantly less polymorphic than those derived from genomic regions, (3) a considerable portion of the developed SSRs can be transferred to related species, and (4) compared to RFLP-markers, cDNA-SSRs yield similar patterns of genetic diversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics.

            Xenobiotic resistance in insects has evolved predominantly by increasing the metabolic capability of detoxificative systems and/or reducing xenobiotic target site sensitivity. In contrast to the limited range of nucleotide changes that lead to target site insensitivity, many molecular mechanisms lead to enhancements in xenobiotic metabolism. The genomic changes that lead to amplification, overexpression, and coding sequence variation in the three major groups of genes encoding metabolic enzymes, i.e., cytochrome P450 monooxygenases (P450s), esterases, and glutathione-S-transferases (GSTs), are the focus of this review. A substantial number of the adaptive genomic changes associated with insecticide resistance that have been characterized to date are transposon mediated. Several lines of evidence suggest that P450 genes involved in insecticide resistance, and perhaps insecticide detoxification genes in general, may share an evolutionary association with genes involved in allelochemical metabolism. Differences in the selective regime imposed by allelochemicals and insecticides may account for the relative importance of regulatory or structural mutations in conferring resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Applications of next generation sequencing in molecular ecology of non-model organisms.

              As most biologists are probably aware, technological advances in molecular biology during the last few years have opened up possibilities to rapidly generate large-scale sequencing data from non-model organisms at a reasonable cost. In an era when virtually any study organism can 'go genomic', it is worthwhile to review how this may impact molecular ecology. The first studies to put the next generation sequencing (NGS) to the test in ecologically well-characterized species without previous genome information were published in 2007 and the beginning of 2008. Since then several studies have followed in their footsteps, and a large number are undoubtedly under way. This review focuses on how NGS has been, and can be, applied to ecological, population genetic and conservation genetic studies of non-model species, in which there is no (or very limited) genomic resources. Our aim is to draw attention to the various possibilities that are opening up using the new technologies, but we also highlight some of the pitfalls and drawbacks with these methods. We will try to provide a snapshot of the current state of the art for this rapidly advancing and expanding field of research and give some likely directions for future developments.
                Bookmark

                Author and article information

                Journal
                J Insect Sci
                J. Insect Sci
                jis
                jis
                Journal of Insect Science
                Oxford University Press
                1536-2442
                2016
                22 August 2016
                : 16
                : 1
                : 82
                Affiliations
                1Beijing Key Laboratory of Forest Protection, College of Forestry, Beijing Forestry University, Beijing 100083, People’s Republic of China ( liuzhenkai@ 123456bjfu.edu.cn ; bjfu_wenjb@ 123456163.com )
                Author notes

                Subject Editor: Qili Feng

                2Corresponding author, e-mail: bjfu_wenjb@ 123456163.com
                Article
                iew067
                10.1093/jisesa/iew067
                5019023
                e50dd959-26c8-4757-923f-6495be7474f4
                © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 23 November 2015
                : 4 July 2016
                Page count
                Pages: 6
                Categories
                Research Article

                Entomology
                eucryptorrhynchus chinensis,454 pyrosequencing,transcriptome,molecular marker
                Entomology
                eucryptorrhynchus chinensis, 454 pyrosequencing, transcriptome, molecular marker

                Comments

                Comment on this article