Many sarcomas and leukemias carry non-random chromosomal translocations encoding mutant fusion transcription factors that are essential to their molecular pathogenesis. These novel, tumor-specific proteins provides a unique opportunity for the development of highly selective anticancer drugs that has yet to be exploited. A particularly clear example is provided by Ewing's Sarcoma Family Tumors (ESFT) which contain a characteristic t(11;22) translocation leading to expression of the oncogenic fusion protein EWS-FLI1. EWS-FLI1 is a disordered protein that precluded standard structure-based small molecule inhibitor design. Using surface plasmon resonance screening, we discovered a lead compound, NSC635437. A derivative compound, YK-4-279, blocks RHA binding to EWS-FLI1, induces apoptosis in ESFT cells, and reduces the growth of ESFT orthotopic xenografts. These findings provide proof of principle that inhibiting the interaction of mutant cancer-specific transcription factors with the normal cellular binding partners required for their oncogenic activity provides a promising strategy for the development of uniquely effective, tumor-specific anticancer agents.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.