17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neural substrates predicting short-term improvement of tinnitus loudness and distress after modified tinnitus retraining therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although tinnitus retraining therapy (TRT) is efficacious in most patients, the exact mechanism is unclear and no predictor of improvement is available. We correlated the extent of improvement with pre-TRT quantitative electroencephalography (qEEG) findings to identify neural predictors of improvement after TRT. Thirty-two patients with debilitating tinnitus were prospectively enrolled, and qEEG data were recorded before their initial TRT sessions. Three months later, these qEEG findings were correlated with the percentage improvements in the Tinnitus Handicap Inventory (THI) scores, and numeric rating scale (NRS) scores of tinnitus loudness and tinnitus perception. The THI score improvement was positively correlated with the pre-treatment activities of the left insula and the left rostral and pregenual anterior cingulate cortices (rACC/pgACC), which control parasympathetic activity. Additionally, the activities of the right auditory cortices and the parahippocampus, areas that generate tinnitus, negatively correlated with improvements in loudness. Improvements in the NRS scores of tinnitus perception correlated positively with the pre-TRT activities of the bilateral rACC/pgACC, areas suggested to form the core of the noise-canceling system. The current study supports both the classical neurophysiological and integrative models of tinnitus; our results serve as a milestone in the development of precision medicine in the context of TRT.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems.

          With the advent of multi-channel EEG hardware systems and the concurrent development of topographic and tomographic signal source localization methods, the international 10/20 system, a standard system for electrode positioning with 21 electrodes, was extended to higher density electrode settings such as 10/10 and 10/5 systems, allowing more than 300 electrode positions. However, their effectiveness as relative head-surface-based positioning systems has not been examined. We previously developed a virtual 10/20 measurement algorithm that can analyze any structural MR head and brain image. Extending this method to the virtual 10/10 and 10/5 measurement algorithms, we analyzed the MR images of 17 healthy subjects. The acquired scalp positions of the 10/10 and 10/5 systems were normalized to the Montreal Neurological Institute (MNI) stereotactic coordinates and their spatial variability was assessed. We described and examined the effects of spatial variability due to the selection of positioning systems and landmark placement strategies. As long as a detailed rule for a particular system was provided, it yielded precise landmark positions on the scalp. Moreover, we evaluated the effective spatial resolution of 329 scalp landmark positions of the 10/5 system for multi-subject studies. As long as a detailed rule for landmark setting was provided, 241 scalp positions could be set effectively when there was no overlapping of two neighboring positions. Importantly, 10/10 positions could be well separated on a scalp without overlapping. This study presents a referential framework for establishing the effective spatial resolutions of 10/20, 10/10, and 10/5 systems as relative head-surface-based positioning systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phantom auditory perception (tinnitus): mechanisms of generation and perception.

            Phantom auditory perception--tinnitus--is a symptom of many pathologies. Although there are a number of theories postulating certain mechanisms of its generation, none have been proven yet. This paper analyses the phenomenon of tinnitus from the point of view of general neurophysiology. Existing theories and their extrapolation are presented, together with some new potential mechanisms of tinnitus generation, encompassing the involvement of calcium and calcium channels in cochlear function, with implications for malfunction and aging of the auditory and vestibular systems. It is hypothesized that most tinnitus results from the perception of abnormal activity, defined as activity which cannot be induced by any combination of external sounds. Moreover, it is hypothesized that signal recognition and classification circuits, working on holographic or neuronal network-like representation, are involved in the perception of tinnitus and are subject to plastic modification. Furthermore, it is proposed that all levels of the nervous system, to varying degrees, are involved in tinnitus manifestation. These concepts are used to unravel the inexplicable, unique features of tinnitus and its masking. Some clinical implications of these theories are suggested.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A standardized boundary element method volume conductor model.

              We used a 3-compartment boundary element method (BEM) model from an averaged magnetic resonance image (MRI) data set (Montreal Neurological Institute) in order to provide simple access to realistically shaped volume conductor models for source reconstruction, as compared to individually derived models. The electrode positions were transformed into the model's coordinate system, and the best fit dipole results were transformed back to the original coordinate system. The localization accuracy of the new approach was tested in a comparison with simulated data and with individual BEM models of epileptic spike data from several patients. The standard BEM model consisted of a total of 4770 nodes, which describe the smoothed cortical envelope, the outside of the skull, and the outside of the skin. The electrode positions were transformed to the model coordinate system by using 3-5 fiducials (nasion, left and right preauricular points, vertex, and inion). The transformation consisted of an averaged scaling factor and a rigid transformation (translation and rotation). The potential values at the transformed electrode positions were calculated by linear interpolation from the stored transfer matrix of the outer BEM compartment triangle net. After source reconstruction the best fit dipole results were transformed back into the original coordinate system by applying the inverse of the first transformation matrix. Test-dipoles at random locations and with random orientations inside of a highly refined reference BEM model were used to simulate noise-free data. Source reconstruction results using a spherical and the standardized BEM volume conductor model were compared to the known dipole positions. Spherical head models resulted in mislocation errors at the base of the brain. The standardized BEM model was applied to averaged and unaveraged epileptic spike data from 7 patients. Source reconstruction results were compared to those achieved by 3 spherical shell models and individual BEM models derived from the individual MRI data sets. Similar errors to that evident with simulations were noted with spherical head models. Standardized and individualized BEM models were comparable. This new approach to head modeling performed significantly better than a simple spherical shell approximation, especially in basal brain areas, including the temporal lobe. By using a standardized head for the BEM setup, it offered an easier and faster access to realistically shaped volume conductor models as compared to deriving specific models from individual 3-dimensional MRI data.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                06 July 2016
                2016
                : 6
                : 29140
                Affiliations
                [1 ]Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine , Seoul, Korea
                [2 ]Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital , Seongnam, Korea
                [3 ]School of Behavioral and Brain Sciences, The University of Texas at Dallas , United States of America
                [4 ]Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
                [5 ]BRAI2N, Sint Augustinus Hospital , Antwerp, Belgium
                Author notes
                Article
                srep29140
                10.1038/srep29140
                4933976
                27381994
                e4f710cb-5298-49f2-917c-c7cab6aef29c
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 29 April 2016
                : 14 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article