8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Boron‐Based Narrowband Multiresonance Delayed Fluorescent Emitters for Organic Light‐Emitting Diodes

      1 , 2
      Advanced Photonics Research
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          Highly efficient organic light-emitting diodes from delayed fluorescence.

          The inherent flexibility afforded by molecular design has accelerated the development of a wide variety of organic semiconductors over the past two decades. In particular, great advances have been made in the development of materials for organic light-emitting diodes (OLEDs), from early devices based on fluorescent molecules to those using phosphorescent molecules. In OLEDs, electrically injected charge carriers recombine to form singlet and triplet excitons in a 1:3 ratio; the use of phosphorescent metal-organic complexes exploits the normally non-radiative triplet excitons and so enhances the overall electroluminescence efficiency. Here we report a class of metal-free organic electroluminescent molecules in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates, of more than 10(6) decays per second. In other words, these molecules harness both singlet and triplet excitons for light emission through fluorescence decay channels, leading to an intrinsic fluorescence efficiency in excess of 90 per cent and a very high external electroluminescence efficiency, of more than 19 per cent, which is comparable to that achieved in high-efficiency phosphorescence-based OLEDs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Organic electroluminescent diodes

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes.

              Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Photonics Research
                Advanced Photonics Research
                Wiley
                2699-9293
                2699-9293
                November 2022
                September 04 2022
                November 2022
                : 3
                : 11
                : 2200201
                Affiliations
                [1 ]Institute for advanced study INAMORI Frontier Research Center (IFRC) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
                [2 ]Organic Optoelectronic Device Lab (OODL) Department of Information Display Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
                Article
                10.1002/adpr.202200201
                e4ed48e7-bc5c-4363-bdac-1001dbbb8425
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article