27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Review: Corneal epithelial stem cells, their niche and wound healing

      review-article
      Molecular Vision
      Molecular Vision

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stem cells emerged as a concept during the second half of 19 th century, first as a theoretical entity, but then became one of the most promising research fields in cell biology. This work describes the most important characteristics of adult stem cells, including the experimental criteria used to identify them, and discusses current knowledge that led to the proposal that stem cells existed in different parts of the eye, such as the retina, lens, conjunctiva, corneal stroma, Descemet’s membrane, and the subject of this review: the corneal epithelium. Evidence includes results that support the presence of corneal epithelial stem cells at the limbus, as well as the major obstacles to isolating them as pure cell populations. Part of this review describes the variation in the basement membrane composition between the limbus and the central cornea, to show the importance of the corneal stem cell niche, its structure, and the participation of extracellular matrix (ECM) components in regulating corneal stem cell compartment. Results obtained by various laboratories suggest that the extracellular matrix plays a central role in regulating stem cell commitment, corneal differentiation, and participation in corneal wound healing, in addition to other environmental signals such as cytokines and growth factors. The niche could define cell division patterns in corneal stem cell populations, establishing whether stem cells divide asymmetrically or symmetrically. Characterization and understanding of the factors that regulate corneal epithelial stem cells should open up new paths for developing new therapies and strategies for accelerating and improving corneal wound healing.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development.

          The p63 gene, a homologue of the tumour-suppressor p53, is highly expressed in the basal or progenitor layers of many epithelial tissues. Here we report that mice homozygous for a disrupted p63 gene have major defects in their limb, craniofacial and epithelial development. p63 is expressed in the ectodermal surfaces of the limb buds, branchial arches and epidermal appendages, which are all sites of reciprocal signalling that direct morphogenetic patterning of the underlying mesoderm. The limb truncations are due to a failure to maintain the apical ectodermal ridge, a stratified epithelium, essential for limb development. The embryonic epidermis of p63-/- mice undergoes an unusual process of non-regenerative differentiation, culminating in a striking absence of all squamous epithelia and their derivatives, including mammary, lacrymal and salivary glands. Taken together, our results indicate that p63 is critical for maintaining the progenitor-cell populations that are necessary to sustain epithelial development and morphogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis.

            Inconsistent with the view that hair follicle stem cells reside in the matrix area of the hair bulb, we found that label-retaining cells exist exclusively in the bulge area of the mouse hair follicle. The bulge consists of a subpopulation of outer root sheath cells located in the midportion of the follicle at the arrector pili muscle attachment site. Keratinocytes in the bulge area are relatively undifferentiated ultrastructurally. They are normally slow cycling, but can be stimulated to proliferate transiently by TPA. Located in a well-protected and nourished environment, these cells mark the lower end of the "permanent" portion of the follicle. Our findings, plus a reevaluation of the literature, suggest that follicular stem cells reside in the bulge region, instead of the lower bulb. This new view provides insights into hair cycle control and the possible involvement of hair follicle stem cells in skin carcinogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Asymmetric and symmetric stem-cell divisions in development and cancer.

              Much has been made of the idea that asymmetric cell division is a defining characteristic of stem cells that enables them to simultaneously perpetuate themselves (self-renew) and generate differentiated progeny. Yet many stem cells can divide symmetrically, particularly when they are expanding in number during development or after injury. Thus, asymmetric division is not necessary for stem-cell identity but rather is a tool that stem cells can use to maintain appropriate numbers of progeny. The facultative use of symmetric or asymmetric divisions by stem cells may be a key adaptation that is crucial for adult regenerative capacity.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                Mol. Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2013
                24 July 2013
                : 19
                : 1600-1613
                Affiliations
                [1]From the Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
                Author notes
                Correspondence to: F. Castro-Muñozledo, Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN., Apdo. Postal 14-740. México City 07000, Mexico; Phone: 52(55)5747-3985; FAX: 52(55)5747-3393; email: fcastro@ 123456cell.cinvestav.mx
                Article
                164 2013MOLVIS0250
                3724956
                23901244
                e4ac00d0-dd4b-40ca-9a35-c0e2e477376f
                Copyright © 2013 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 April 2013
                : 22 July 2013
                Categories
                Review
                Custom metadata
                Export to XML

                Vision sciences
                Vision sciences

                Comments

                Comment on this article