2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The main objective was to produce 3D printable hydrogels based on GelMA and hydroxyapatite doped with cerium ions with potential application in bone regeneration. The first part of the study regards the substitution of Ca2+ ions from hydroxyapatite structure with cerium ions (Ca10-xCex(PO4)6(OH)2, xCe = 0.1, 0.3, 0.5). The second part followed the selection of the optimal concentration of HAp doped, which will ensure GelMA-based scaffolds with good biocompatibility, viability and cell proliferation. The third part aimed to select the optimal concentrations of GelMA for the 3D printing process (20%, 30% and 35%). In vitro biological assessment presented the highest level of cell viability and proliferation potency of GelMA-HC5 composites, along with a low cytotoxic potential, highlighting the beneficial effects of cerium on cell growth, also supported by Live/Dead results. According to the 3D printing experiments, the 30% GelMA enriched with HC5 was able to generate 3D scaffolds with high structural integrity and homogeneity, showing the highest suitability for the 3D printing process. The osteogenic differentiation experiments confirmed the ability of 30% GelMA-3% HC5 scaffold to support and efficiently maintain the osteogenesis process. Based on the results, 30% GelMA-3% HC5 3D printed scaffolds could be considered as biomaterials with suitable characteristics for application in bone tissue engineering.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          The Scherrer equation versus the 'Debye-Scherrer equation'.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair.

            Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context, gelatin-methacryloyl (gelMA) hydrogels have recently gained increased attention. This interest is sparked by the combination of the inherent bioactivity of gelatin and the physicochemical tailorability of photo-crosslinkable hydrogels. GelMA is a versatile matrix that can be used to engineer tissue analogs ranging from vasculature to cartilage and bone. Convergence of biological and biofabrication approaches is necessary to progress from merely proving cell functionality or construct shape fidelity towards regenerating tissues. GelMA has a critical pioneering role in this process and could be used to accelerate the development of clinically relevant applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue

              Photocrosslinked gelatin methacryloyl (GelMA) hydrogels have attracted great concern in the biomedical field because of their good biocompatibility and tunable physicochemical properties. Herein, different approaches to synthesize GelMA were introduced, especially, the typical method using UV light to crosslink the gelatin-methacrylic anhydride (MA) precursor was introduced in detail. In addition, the traditional and cutting-edge technologies to characterize the properties of GelMA hydrogels and GelMA prepolymer were also overviewed and compared. Furthermore, the applications of GelMA hydrogels in cell culture and tissue engineering especially in the load-bearing tissue (bone and cartilage) were summarized, followed by concluding remarks.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                February 2022
                February 06 2022
                : 23
                : 3
                : 1841
                Article
                10.3390/ijms23031841
                35163761
                e496176e-3ba1-4b09-83cc-c9e8adf6eb91
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article