17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      How Precise Are Our Quantitative Structure–Activity Relationship Derived Predictions for New Query Chemicals?

      research-article
      , , ,
      ACS Omega
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantitative structure–activity relationship (QSAR) models have long been used for making predictions and data gap filling in diverse fields including medicinal chemistry, predictive toxicology, environmental fate modeling, materials science, agricultural science, nanoscience, food science, and so forth. Usually a QSAR model is developed based on chemical information of a properly designed training set and corresponding experimental response data while the model is validated using one or more test set(s) for which the experimental response data are available. However, it is interesting to estimate the reliability of predictions when the model is applied to a completely new data set (true external set) even when the new data points are within applicability domain (AD) of the developed model. In the present study, we have categorized the quality of predictions for the test set or true external set into three groups (good, moderate, and bad) based on absolute prediction errors. Then, we have used three criteria [(a) mean absolute error of leave-one-out predictions for 10 most close training compounds for each query molecule; (b) AD in terms of similarity based on the standardization approach; and (c) proximity of the predicted value of the query compound to the mean training response] in different weighting schemes for making a composite score of predictions. It was found that using the most frequently appearing weighting scheme 0.5–0–0.5, the composite score-based categorization showed concordance with absolute prediction error-based categorization for more than 80% test data points while working with 5 different datasets with 15 models for each set derived in three different splitting techniques. These observations were also confirmed with true external sets for another four endpoints suggesting applicability of the scheme to judge the reliability of predictions for new datasets. The scheme has been implemented in a tool “Prediction Reliability Indicator” available at http://dtclab.webs.com/software-tools and http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/, and the tool is presently valid for multiple linear regression models only.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Computer Aided Design of Experiments

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            QSAR applicabilty domain estimation by projection of the training set descriptor space: a review.

            As the use of Quantitative Structure Activity Relationship (QSAR) models for chemical management increases, the reliability of the predictions from such models is a matter of growing concern. The OECD QSAR Validation Principles recommend that a model should be used within its applicability domain (AD). The Setubal Workshop report provided conceptual guidance on defining a (Q)SAR AD, but it is difficult to use directly. The practical application of the AD concept requires an operational definition that permits the design of an automatic (computerised), quantitative procedure to determine a models AD. An attempt is made to address this need, and methods and criteria for estimating AD through training set interpolation in descriptor space are reviewed. It is proposed that response space should be included in the training set representation. Thus, training set chemicals are points in n-dimensional descriptor space and m-dimensional model response space. Four major approaches for estimating interpolation regions in a multivariate space are reviewed and compared: range, distance, geometrical, and probability density distribution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design.

              Quantitative structure-activity relationships (QSARs) have important applications in drug discovery research, environmental fate modeling, property prediction, etc. Validation has been recognized as a very important step for QSAR model development. As one of the important objectives of QSAR modeling is to predict activity/property/toxicity of new chemicals falling within the domain of applicability of the developed models and QSARs are being used for regulatory decisions, checking reliability of the models and confidence of their predictions is a very important aspect, which can be judged during the validation process. One prime application of a statistically significant QSAR model is virtual screening for molecules with improved potency based on the pharmacophoric features and the descriptors appearing in the QSAR model. Validated QSAR models may also be utilized for design of focused libraries which may be subsequently screened for the selection of hits. The present review focuses on various metrics used for validation of predictive QSAR models together with an overview of the application of QSAR models in the fields of virtual screening and focused library design for diverse series of compounds with citation of some recent examples.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                19 September 2018
                30 September 2018
                : 3
                : 9
                : 11392-11406
                Affiliations
                []Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University , Kolkata 700 032, India
                []Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University , Jackson, Mississippi 39217, United States
                Author notes
                Article
                10.1021/acsomega.8b01647
                6645132
                31459245
                e48d4a13-6828-43f0-9b6d-a0bfd5fd0e28
                Copyright © 2018 American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 13 July 2018
                : 06 September 2018
                Categories
                Article
                Custom metadata
                ao8b01647
                ao-2018-01647e

                Comments

                Comment on this article