0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multimodal artificial intelligence-based pathogenomics improves survival prediction in oral squamous cell carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we aimed to develop a novel prognostic algorithm for oral squamous cell carcinoma (OSCC) using a combination of pathogenomics and AI-based techniques. We collected comprehensive clinical, genomic, and pathology data from a cohort of OSCC patients in the TCGA dataset and used machine learning and deep learning algorithms to identify relevant features that are predictive of survival outcomes. Our analyses included 406 OSCC patients. Initial analyses involved gene expression analyses, principal component analyses, gene enrichment analyses, and feature importance analyses. These insights were foundational for subsequent model development. Furthermore, we applied five machine learning/deep learning algorithms (Random Survival Forest, Gradient Boosting Survival Analysis, Cox PH, Fast Survival SVM, and DeepSurv) for survival prediction. Our initial analyses revealed relevant gene expression variations and biological pathways, laying the groundwork for robust feature selection in model building. The results showed that the multimodal model outperformed the unimodal models across all methods, with c-index values of 0.722 for RSF, 0.633 for GBSA, 0.625 for FastSVM, 0.633 for CoxPH, and 0.515 for DeepSurv. When considering only important features, the multimodal model continued to outperform the unimodal models, with c-index values of 0.834 for RSF, 0.747 for GBSA, 0.718 for FastSVM, 0.742 for CoxPH, and 0.635 for DeepSurv. Our results demonstrate the potential of pathogenomics and AI-based techniques in improving the accuracy of prognostic prediction in OSCC, which may ultimately aid in the development of personalized treatment strategies for patients with this devastating disease.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            KEGG: kyoto encyclopedia of genes and genomes.

            M Kanehisa (2000)
            KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toward understanding the origin and evolution of cellular organisms

              In this era of high‐throughput biology, bioinformatics has become a major discipline for making sense out of large‐scale datasets. Bioinformatics is usually considered as a practical field developing databases and software tools for supporting other fields, rather than a fundamental scientific discipline for uncovering principles of biology. The KEGG resource that we have been developing is a reference knowledge base for biological interpretation of genome sequences and other high‐throughput data. It is now one of the most utilized biological databases because of its practical values. For me personally, KEGG is a step toward understanding the origin and evolution of cellular organisms.
                Bookmark

                Author and article information

                Contributors
                Vollmer_a@ukw.de
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 March 2024
                7 March 2024
                2024
                : 14
                : 5687
                Affiliations
                [1 ]GRID grid.411760.5, ISNI 0000 0001 1378 7891, Department of Oral and Maxillofacial Plastic Surgery, , University Hospital of Würzburg, ; 97070 Würzburg, Franconia Germany
                [2 ]GRID grid.411544.1, ISNI 0000 0001 0196 8249, Department of Oral and Maxillofacial Surgery, , Tuebingen University Hospital, ; Osianderstrasse 2-8, 72076 Tuebingen, Germany
                [3 ]Maxillofacial Surgery University Hospital Ruppin-Brandenburg, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
                [4 ]GRID grid.38142.3c, ISNI 000000041936754X, Department of Anesthesiology, Perioperative and Pain Medicine, , Brigham and Women’s Hospital, Harvard Medical School, ; Boston, USA
                [5 ]Department of Spine Surgery, Loretto Hospital, Freiburg, Germany
                [6 ]Institute of Experimental Neuroregeneration, Paracelsus Medical University, ( https://ror.org/03z3mg085) 5020 Salzburg, Austria
                [7 ]Austrian Cluster for Tissue Regeneration, ( https://ror.org/052f3yd19) Vienna, Austria
                [8 ]Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, ( https://ror.org/0245cg223) Freiburg, Germany
                Article
                56172
                10.1038/s41598-024-56172-5
                10920832
                38453964
                e4865beb-ec09-49c3-9985-96c228773501
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 July 2023
                : 3 March 2024
                Funding
                Funded by: Universitätsklinikum Würzburg (8913)
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                oral cancer,oral squamous cell carcinoma,survival,artificial intelligence,deep learning,machine learning,pathogenomics,multimodal prediction,cancer,diseases,health care,medical research,oncology

                Comments

                Comment on this article