7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunomodulation and Immune Escape Strategies of Gastrointestinal Helminths and Schistosomes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parasitic worms (helminths) developed various immunoregulatory mechanisms to counteract the immune system of their host. The increasing identification and characterization of helminth-derived factors with strong immune modulatory activity provides novel insights into immune escape strategies of helminths. Such factors might be good targets to enhance anti-helminthic immune responses. In addition, immunosuppressive helminth-derived factors could be useful to develop new therapeutic strategies for treatment of chronic inflammatory conditions. This review will take an in depth look at the effects of immunomodulatory molecules produced by different helminths with a focus on schistosomes and mouse models of hookworm infections.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation.

          Excessive inflammation and tumour-necrosis factor (TNF) synthesis cause morbidity and mortality in diverse human diseases including endotoxaemia, sepsis, rheumatoid arthritis and inflammatory bowel disease. Highly conserved, endogenous mechanisms normally regulate the magnitude of innate immune responses and prevent excessive inflammation. The nervous system, through the vagus nerve, can inhibit significantly and rapidly the release of macrophage TNF, and attenuate systemic inflammatory responses. This physiological mechanism, termed the 'cholinergic anti-inflammatory pathway' has major implications in immunology and in therapeutics; however, the identity of the essential macrophage acetylcholine-mediated (cholinergic) receptor that responds to vagus nerve signals was previously unknown. Here we report that the nicotinic acetylcholine receptor alpha7 subunit is required for acetylcholine inhibition of macrophage TNF release. Electrical stimulation of the vagus nerve inhibits TNF synthesis in wild-type mice, but fails to inhibit TNF synthesis in alpha7-deficient mice. Thus, the nicotinic acetylcholine receptor alpha7 subunit is essential for inhibiting cytokine synthesis by the cholinergic anti-inflammatory pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit.

            Parasitic helminths and allergens induce a type 2 immune response leading to profound changes in tissue physiology, including hyperplasia of mucus-secreting goblet cells and smooth muscle hypercontractility. This response, known as 'weep and sweep', requires interleukin (IL)-13 production by tissue-resident group 2 innate lymphoid cells (ILC2s) and recruited type 2 helper T cells (TH2 cells). Experiments in mice and humans have demonstrated requirements for the epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP) and IL-25 in the activation of ILC2s, but the sources and regulation of these signals remain poorly defined. In the small intestine, the epithelium consists of at least five distinct cellular lineages, including the tuft cell, whose function is unclear. Here we show that tuft cells constitutively express IL-25 to sustain ILC2 homeostasis in the resting lamina propria in mice. After helminth infection, tuft-cell-derived IL-25 further activates ILC2s to secrete IL-13, which acts on epithelial crypt progenitors to promote differentiation of tuft and goblet cells, leading to increased frequencies of both. Tuft cells, ILC2s and epithelial progenitors therefore comprise a response circuit that mediates epithelial remodelling associated with type 2 immunity in the small intestine, and perhaps at other mucosal barriers populated by these cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mammalian nicotinic acetylcholine receptors: from structure to function.

              The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a "receptive substance," from which the idea of a "receptor" came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of alpha-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer's, Parkinson's, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                17 September 2020
                2020
                : 11
                : 572865
                Affiliations
                Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU) , Erlangen, Germany
                Author notes

                Edited by: Paul Giacomin, James Cook University, Australia

                Reviewed by: William Harnett, University of Strathclyde, United Kingdom; Danielle Smyth, University of Dundee, United Kingdom; Alex Loukas, James Cook University, Australia

                *Correspondence: David Voehringer david.voehringer@ 123456uk-erlangen.de

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.572865
                7527441
                33042153
                e485e61d-c383-448d-ab07-b1524eb6c90b
                Copyright © 2020 Wiedemann and Voehringer.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 June 2020
                : 18 August 2020
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 82, Pages: 13, Words: 10310
                Funding
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Categories
                Immunology
                Review

                Immunology
                nematode,trematode,immunomodulation,type 2 immunity,parasites,schistosomes,helminths
                Immunology
                nematode, trematode, immunomodulation, type 2 immunity, parasites, schistosomes, helminths

                Comments

                Comment on this article