4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Adsorbent materials for carbon dioxide capture from large anthropogenic point sources.

          Since the time of the industrial revolution, the atmospheric CO(2) concentration has risen by nearly 35 % to its current level of 383 ppm. The increased carbon dioxide concentration in the atmosphere has been suggested to be a leading contributor to global climate change. To slow the increase, reductions in anthropogenic CO(2) emissions are necessary. Large emission point sources, such as fossil-fuel-based power generation facilities, are the first targets for these reductions. A benchmark, mature technology for the separation of dilute CO(2) from gas streams is via absorption with aqueous amines. However, the use of solid adsorbents is now being widely considered as an alternative, potentially less-energy-intensive separation technology. This Review describes the CO(2) adsorption behavior of several different classes of solid carbon dioxide adsorbents, including zeolites, activated carbons, calcium oxides, hydrotalcites, organic-inorganic hybrids, and metal-organic frameworks. These adsorbents are evaluated in terms of their equilibrium CO(2) capacities as well as other important parameters such as adsorption-desorption kinetics, operating windows, stability, and regenerability. The scope of currently available CO(2) adsorbents and their critical properties that will ultimately affect their incorporation into large-scale separation processes is presented.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Water stability and adsorption in metal-organic frameworks.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct Capture of CO2 from Ambient Air.

              The increase in the global atmospheric CO2 concentration resulting from over a century of combustion of fossil fuels has been associated with significant global climate change. With the global population increase driving continued increases in fossil fuel use, humanity's primary reliance on fossil energy for the next several decades is assured. Traditional modes of carbon capture such as precombustion and postcombustion CO2 capture from large point sources can help slow the rate of increase of the atmospheric CO2 concentration, but only the direct removal of CO2 from the air, or "direct air capture" (DAC), can actually reduce the global atmospheric CO2 concentration. The past decade has seen a steep rise in the use of chemical sorbents that are cycled through sorption and desorption cycles for CO2 removal from ultradilute gases such as air. This Review provides a historical overview of the field of DAC, along with an exhaustive description of the use of chemical sorbents targeted at this application. Solvents and solid sorbents that interact strongly with CO2 are described, including basic solvents, supported amine and ammonium materials, and metal-organic frameworks (MOFs), as the primary classes of chemical sorbents. Hypothetical processes for the deployment of such sorbents are discussed, as well as the limited array of technoeconomic analyses published on DAC. Overall, it is concluded that there are many new materials that could play a role in emerging DAC technologies. However, these materials need to be further investigated and developed with a practical sorbent-air contacting process in mind if society is to make rapid progress in deploying DAC as a means of mitigating climate change.
                Bookmark

                Author and article information

                Journal
                Korean Journal of Chemical Engineering
                Korean J. Chem. Eng.
                Springer Science and Business Media LLC
                0256-1115
                1975-7220
                January 2022
                January 06 2022
                January 2022
                : 39
                : 1
                : 1-19
                Article
                10.1007/s11814-021-0976-0
                e46215a4-f60c-48e0-b02f-4e71a538e521
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article